保型L関数の非消滅性の現状 Masao Tsuzuki (Sophia University)

1 The Standard *L*-functions of GL(n)

- \bullet *F* : an algebraic number field.
- $\Sigma_F = \Sigma_{\text{fin}} \cup \Sigma_{\infty}$: the set of places of F.
- \mathfrak{O}_F : the ring of integers of F.
- \mathbb{A}_F : the ring of adeles of F.
- $\mathcal{A}_0(G_n)$: the set of irreducible cuspidal automorphic representations of $\operatorname{GL}_n(\mathbb{A}_F)$. ($G_n := \operatorname{GL}(n)$)
- $\mathcal{A}_0^u(G_n)$: the set of $\pi \in \mathcal{A}_0(G_n)$ whose central character ω_{π} is unitary.

1.1 The Vogan-Tadic classification

([33], [34], [37], a convenient reference is [14]) Fix $v \in \Sigma_F$. Set

 $\Pi^{u}(G_{n}(F_{v})) := \{ \text{irreducible smooth unitary rep's of } G_{n}(F_{v}) \} / \sim,$ $\Pi^{u}_{d}(G_{n}(F_{v})) := \{ \delta \in \Pi^{u}(G_{n}(F_{v})) | \delta \text{ is square integrable } \},$ $\Pi^{u}_{sc}(G_{n}(F_{v})) := \{ \sigma \in \Pi^{u}(G_{n}(F_{v})) | \sigma \text{ is supercuspidal } \} (\text{when } v < \infty)$

• The unramified twist of $\pi \in \Pi(G_n(F_v))$ by $s \in \mathbb{C}$ is defined as

 $\pi(s) : g \mapsto |\det g|^s \pi(g).$

• (Discrete series) $\Pi^u_d(G_n(F_v)) = \{Q(\sigma, d) | \sigma \in \Pi^u_{sc}(G_{n/d}(F_v)), d|n\},\$

where
$$m = n/d$$
,
 $I_{m,...,m}\left(\sigma\left(\frac{1-d}{2}\right), \sigma\left(\frac{3-d}{2}\right), \ldots, \sigma\left(\frac{d-1}{2}\right)\right) \xrightarrow[unique quotient]{} Q(\sigma, d).$
• (Speh module) For $\delta \in \Pi^u_d(G_m(F_v))$ and $d \ge 2$, the module $\operatorname{sp}(\delta, d)$
is an element of $\Pi^u(G_{md}(F_v))$ defined as

$$I_{m,...,m}\left(\delta(\frac{d-1}{2}),\delta(\frac{d-3}{2}),\ldots,\delta(\frac{1-d}{2})\right) \xrightarrow{} \text{the Langlands quotient} \operatorname{sp}(\delta,d).$$

• (Complementary series) For $\delta \in \Pi^u_d(G_m(F_v))$, $d \in \mathbb{N}$ and $\alpha \in (0, 1/2)$, set

$$u(\delta,d,\alpha) := I_{md,md}\bigg(\operatorname{sp}(\delta,d)(\alpha),\operatorname{sp}(\delta,d)(-\alpha)\bigg),$$

where we set $sp(\delta, 1) = \delta$.

• $\mathcal{B}(n)$: all possible rep's of $G_n(F_v)$ among all those δ , $\operatorname{sp}(\delta, d)$ and $u(\delta, d, \alpha)$ constructed above.

THEOREM (Vogan-Tadic)

The full unitary dual of $G_n(F_v)$ is given as

$$\Pi^{u}(G_{n}(F_{v})) = \{I_{n_{1},\ldots,n_{r}}(\sigma_{1},\ldots,\sigma_{r}) | \sigma_{j} \in \mathcal{B}(n_{j}) (1 \leq j \leq r) \} / \sim .$$

The multiset $\{\sigma_1, \ldots, \sigma_r\}$ determines the class of π uniquely.

- generic \Leftrightarrow Blue blocks $\notin \{\sigma_j\}$.
- tempered \Leftrightarrow Blue blocks & Green blocks $\notin \{\sigma_j\}$.

1.2 The standard *L*-functions

• $\pi \cong \bigotimes_{v \in \Sigma_F} \pi_v \in \mathcal{A}_0(\mathrm{GL}_n)$, the standard *L*-function is defined as $L(s,\pi) := \prod_{v \in \Sigma_F} L(s,\pi_v) \quad (\text{abs. conv. on } \operatorname{Re} s \gg 0).$

The local factor $L(s, \pi_v)$ is described as follows:

(i) If $I(\delta_1, ..., \delta_r) \to \pi_v$ (Langlands quoteint) with $\delta_j \in \Pi^u_d(G_{n_j}(F_v))$, $L(s, \pi_v) = \prod_{j=1}^r L(s, \delta_j).$ (ii) If $v \in \Sigma_{\text{fin}}$ and $\delta \cong Q(\sigma, d)$ with $\sigma \in \Pi_{\text{sc}}(G_m(F_v))$ (n = dm), then $L(s, \delta) = L\left(s + \frac{d-1}{2}, \sigma\right).$

If $v \in \Sigma_{\infty}$ and $\delta \in \Pi_{\mathrm{d}}^{u}(G_{m}(F_{v}))$ (m = 1, 2), $L(s, \delta) = \begin{cases} \Gamma_{\mathbb{R}}(s + \nu + \epsilon), & (\delta \cong \chi_{\nu, \epsilon} (\nu \in \mathbb{C}, \epsilon \in \{0, 1\}), \\ \Gamma_{\mathbb{C}}\left(s + \frac{l}{2} + \nu\right), & (\delta \cong D_{\nu, l} (\nu \in \mathbb{C}, l \in \mathbb{N}). \end{cases}$

(iii) Let $v \in \Sigma_{\text{fin}}$. For $\sigma \in \Pi_{\text{sc}}(G_n(F_v))$,

$$L(s,\sigma) = \begin{cases} (1-q_v^{-s})^{-1} & (n=1, \ \sigma = \mathbf{1}), \\ 1 & (\text{otherwise}). \end{cases}$$

Basic properties of the standard L

Let $\pi \in \mathcal{A}_0^u(G_n)$ with n > 1. Then

(1) $L(s, \pi) = \prod_{v} L(s, \pi_{v})$ conv. abs. on Re s > 1.

(2) $L(s,\pi)$ (Re s > 1) has a holomorphic continuation to \mathbb{C} .

(3) $L(s,\pi)$ and $L(1-s,\pi^{\vee})$ satisfies

$$L(s,\pi) = W(\pi) (D_{F/\mathbb{Q}}^{n} \mathbb{N}(\mathbf{q}_{\pi}))^{1/2-s} L(1-s,\pi^{\vee}), \qquad (1)$$

where q_{π} is the conductor of π and $W(\pi) = \epsilon(\frac{1}{2}, \pi) \in \mathbb{C}^1$ is the root number.

(3) The holomorphic function $L(s, \pi)$ is bounded on any vertical strip $\{\sigma \in \mathbb{C} | a < \operatorname{Re} s < b\}$.

THEOREM (Jacquet-Shalika [9])

Let $\pi \in \mathcal{A}_0^u(G_n)$. Then $L(s,\pi) \neq 0$ on the edge of the critical strip $\operatorname{Re} s = 0, 1$.

THEOREM (Shalika)

Any $\pi \in \mathcal{A}_0(G_n)$ is globally generic.

If $\pi \cong \otimes_v \pi_v$, then, for each $v \in \Sigma_F$, π_v is a generic representation of $G_n(F_v)$, i.e.,

$$\dim_{\mathbb{C}} \operatorname{Hom}_{G_v(F_v)}(\pi_v, C^{\infty} \operatorname{Ind}_{U_n(F_v)}^{G_n(F_v)}(\theta)) = 1,$$

where $U_n(F_v)$ is the upper-triangular maximal unipotent subgroup and θ is the character $\psi_v(\sum_{j=1}^{n-1} u_{jj+1})$ of $U_v(F_v)$. A consequence of genericity and the Vogan-Tadic classification

Suppose $\pi \in \mathcal{A}_0^u(G_n)$. Then $\exists S \subset \Sigma_F$ (finite set) s.t.

$$\pi_v^{\operatorname{GL}_n(\mathfrak{O}_v)} \neq \{0\} \qquad (\forall v \in \Sigma_{\operatorname{fin}} - S).$$

• For $v \in \Sigma_{fin} - S$,

$$\pi_{\upsilon} \cong I_{1,...,1}\left(\{\chi_j\}_{j=1}^a, \{\chi_j(\nu_i), \chi_j(-\nu_i)\}_{i=a+1}^n\right)$$

with $\chi_j \in F_v^{\times}$ (unramified), and $\nu_j \in (0, 1/2)$.

• For $v \in S$,

$$\pi_{v} \cong I_{n_{1},...,n_{r}} \left(\{\delta_{j}\}_{j=1}^{a}, \{\delta_{j}(\nu_{j}), \delta_{j}(-\nu_{j})\}_{i=a+1}^{r} \right)$$

with $\delta_{j} \in \Pi_{d}^{u}(G_{n_{j}}(F_{v}))$ and $\nu_{j} \in (0, \frac{1}{2})$.

Remark : The generalized Ramanujan conj. for $\pi \Leftrightarrow \{\nu_j\}$ is empty $(\forall v \in \Sigma_F)$.

Holomorphy of local *L*-factors

Let $\pi \cong \bigotimes_v \pi \in \mathcal{A}^u_0(G_n)$.

(i) For $v \in \Sigma_F$, there exists $\theta_v > 0$ such that $L(s, \pi_v)$ has neither zeros nor poles on $\text{Re} > 1/2 - \theta_v$.

(ii) If π_v is tempered, then $L(s, \pi_v)$ has neither zeros nor poles on $\operatorname{Re} s > 0$.

A remark on trivial zeros

For a finite set $S \subset \Sigma_F$,

$$L^{S}(s,\pi) := \prod_{v \notin S} L(s,\pi_{v}) \quad (\operatorname{Re} s > 1).$$

Let $s_0 \in \mathbb{C}$ with $\frac{1}{2} \leq \operatorname{Re} s_0 < 1$. Then

$$L(s_0,\pi) \neq 0 \quad \iff \quad L^S(s_0,\pi) \neq 0$$

If $\pi_S = \bigotimes_{v \in S} \pi_v$ is tempered, the same is true for $0 < \operatorname{Re} s_0 < 1$.

This follows from the local holomorphy of *L*-factors. Due to the lack of the gamma factors, $L^{\infty}(s,\pi)$ has more zeros than $L(s,\pi)$; the extra zeros are called the trivial zeros of $L^{\infty}(s,\pi)$ (*cf.* $s = -2, -4, \ldots$ for $\zeta(s)$.)

2 The problem

- \mathbb{X} : the set of continuous characters $\chi : \mathbb{A}_F^{\times} / F^{\times} F_{\infty}^{\times} \to \mathbb{C}^1$.
- \mathfrak{q}_{χ} : the conductor of $\chi \in \mathbb{X}$.
- For $\mathfrak{q} \subset \mathfrak{O}_F$, $\mathbb{X}(\mathfrak{q}) := \{\chi \in \mathbb{X} | \mathfrak{q}_{\chi} = \mathfrak{q} \}.$

Example : When $F = \mathbb{Q}$ and $q \in \mathbb{N}$, $\mathbb{X}(q)$ is the primitive even

Dirichelet characters modulo q.

PROBLEM (nonvanishing of twisted *L*-values)

- $\mathcal{A} \subset \mathcal{A}_0^u(G_n)$: a class of cuspidal representations
- $X \subset X$: a (large) subset.

Given a $\pi \in \mathcal{A}$ and a point $s_0 \in \mathbb{C}$,

- (1) does there exist $\chi \in X$ such that $L(s_0, \pi \otimes \chi) \neq 0$? (non-vansihing)
- (2) For $\pi \in \mathcal{A}$, how the cardinarity

 $\#\{\chi\in X\cap\mathbb{X}(\mathfrak{q})|L(s_0,\pi\otimes\chi)\neq 0\}$

grows as $N(q) \rightarrow \infty$? (quantitative non-vanishing)

Remarks :

- This is non-trivial only when $0 < \operatorname{Re} s_0 < 1$.
- This is a problem on the classes \mathcal{A} and X (not on individual χ). (The nature of \mathcal{A} and X is of great relevance.)
- GRH predicts $L(s_0, \pi \otimes \chi) \neq 0$ unless $\operatorname{Re} s_0 = \frac{1}{2}$.

• If $\pi \in \mathcal{A}_0^u(G_{2n})$ is regular algebraic, $s_0 = \frac{1}{2}$ is the only possible critical point for which the non-vanishing of the *L*-value has to be proved. In Namikawa's talk, for the non-triviality of Ash-Ginzburg's *p*-adic *L*-function, the non-vanshing $L(\frac{1}{2}, \pi \otimes \chi) \neq 0$ for some $\chi \in \mathbb{X}(p^{\infty})$ is needed. (For GL(2), this is OK by Rohrlich's result.)

3 Known results

- GL(1): For Dirichlet characters: [13], [1] etc.,
 For canonical Hecke characters of CM-fields : [28], [?], [21],
 [29], [19] etc.
- GL(2) : [30], [31], [3], [6], [23], [24], [8], [25], [20] etc. Most of these works deal with nonvanishing at $s_0 = \frac{1}{2}$. (We remark that [31] and [6] consider the problem at an arbitrary point s_0).

• GL(n) with n > 2: [2], [15], [16], [17], [5], [4].

The non-vanishing result for the central point $s_0 = \frac{1}{2}$ seems very few. As far as the speaker can find, there are at least two such results:

-For
$$\pi \in \mathcal{A}_0(G_3)$$
 over $F = \mathbb{Q}$ by Luo ([15]).

- For $\operatorname{Ad}(\pi)$ $(\pi \in \mathcal{A}_0(G_2))$ over $F = \mathbb{Q}$ by Bump-Friedberg-Hoffstein ([4]).

There seems no non-vansihing results along $\chi \in \mathbb{X}(p^{\infty})$.

METHODS :

- The approximate functional equation + a bound of (hyper-)Kloosterman sums (due to Weil and Deligne). [30], [31], [23], [24], [2], [15], [16], [17].
- (For quadratic twists)

Waldspurger's result on Shimura correspondence + An estimation of Fourier coefficient of half-integral weight forms. ([25])

• (For anti-cyclotomic twists)

Waldspurger type formula identifying the central *L*-value (degree 4 Euler product) with some toric periods (Waldspurger, S. W. Zhang, Gross) + Equidistribution of Heeger divisors on Shimura varieties. ([35], [36], [20]

• Metaplectic Eisenstein series and the related multiple Dirichlet series. [3], [6], [4], [5].

4 Method I

The *L*-value is captured by the Hecke's zeta integral. **EXAMPLE :** $f = \sum_{n} a(n)q^n \in S_{2k}(SL_2(\mathbb{Z})).$

$$\begin{split} &\Gamma_{\mathbb{C}}(s)L(s,f) \\ &= \int_0^\infty f(iy)y^s \frac{\mathrm{d}y}{y} \\ &= \int_0^u f(iy)y^s \frac{\mathrm{d}y}{y} + \int_u^\infty f(iy)y^s \frac{\mathrm{d}y}{y} \\ &= (-1)^k \int_{u^{-1}}^\infty f(iy)y^{2k-s} \frac{\mathrm{d}y}{y} + \int_u^\infty f(iy)y^s \frac{\mathrm{d}y}{y} \\ &= (-1)^k \int_{u^{-1}}^\infty \sum_{n=1}^\infty a(n)e^{-2\pi y} y^{2k-s} \frac{\mathrm{d}y}{y} + \int_u^\infty \sum_{n=1}^\infty a(n)e^{-2\pi y} y^s \frac{\mathrm{d}y}{y}. \end{split}$$

4.1 Rohrlich([30])

 $\bullet F = \mathbb{Q}$

- $\bullet X$: Dirichlet characters with bounded ramification locus.
- n = 2, $\pi = \pi_f \in \mathcal{A}^u_0(G_2)$ with $f \in S^{\text{new}}_2(\Gamma_0(N), \psi)$ • $s_0 = \frac{1}{2}$

THEOREM 1 (Rohrlich (1984))

- $f \in S_2^{\text{new}}(\Gamma_0(N), \psi)$.
- P : a finite nonempty set of prime numbers not dividing N.

Then there exists $q_0 \in \mathbb{N}$ such that

$$L\left(\frac{1}{2}, \pi_f \otimes \chi\right) \neq 0$$
 for all $\chi \in \mathbb{X}(q)$ with $q = \prod_{p \in P} p^{e_p} > q_0$.

THEOREM 2 (Rohrlich (1984))

- $f \in S_2^{\text{new}}(\Gamma_0(N), \psi)$.
- $\bullet~P$: a finite nonempty set of prime numbers not dividing N.
- $F = \mathbb{Q}(a_f(n)|(n, N) = 1)$ the Hecke field of f.
- $F(\chi) = F(\chi(n)|n \in \mathbb{N}).$

Then,

$$\frac{1}{\#[F(\chi):F]} \sum_{\sigma \in \operatorname{Hom}_{F-\operatorname{alg}}(F(\chi),\mathbb{C})} L\left(\frac{1}{2}, f \otimes \chi^{\sigma}\right) = 1 + o(1), \quad (q \to \infty)$$

for $\chi \in \mathbb{X}(q)$ with $q = \prod_{p \in P} p^{e_p} > q_0$

Main ingredients :

- A truncated expression of Hecke's zeta integral.
- The two bounds concerning $\chi_{\rm av}(n) = [F(\chi):F]^{-1} \sum_{\sigma} \chi^{\sigma}(n)$:

 $\inf\{n \ge 2 | \chi_{av}(n) \ne 0\} \gg q^{\gamma} \quad (\text{with some } \gamma > 0),$ $\#\{n \in [1, q] | \chi_{av}(n) \ne 0\} = O(1)$

uniform in χ and $q = q_{\chi}$.

- Weil's bound on the Kloosterman sum.
- Shimura's algebraicity is used to ensure $L\left(\frac{1}{2}, f \otimes \chi\right) \neq 0$ if and only if $L\left(\frac{1}{2}, f^{\sigma} \otimes \chi^{\sigma}\right) \neq 0$.

Remark: The asymptotic formula implies the non-vanishing of the *L*-values for *some* character-twist of sufficiently large conductor. Shimura's result is used to claim the non-vanishing for *all* twists with the same large conductors.

The following application is given:

THEOREM 3 (Rohrlich (1984))

Let E/\mathbb{Q} be an elliptic curve with CM by the integer ring of an imaginary quadratic field. Let P be a finite set of primes over which E has good reduction. Let L/\mathbb{Q} be the maximal abelian extension unramified outside $P \cup \{\infty\}$. Then E(L) is finitely generated.

Novelty :

- \bullet Generic non-vanishing along χ with p-power conductors.
- Theorem 1 automoatically implies the *simultaneous non-vanishing* result :
 - $f_i \in S_2^{\text{new}}(N_i, \psi_i) \ (i = 1, \dots, r).$
 - P : a finite set of primes not dividing $N_1 \dots N_r$.

Then there exists q_0 such that

$$L\left(\frac{1}{2}, f_i \otimes \chi\right) \neq 0$$
 for all $1 \leq i \leq r$

and for all $\chi \in \mathbb{X}(q)$ with $q = \prod_{p \in P} p^{e_p} > q_0$.

The *L*-value is captured by the approximate functional equation.

5.1 Approximate functional equation

Let $\pi \in \mathcal{A}_0^u(G_n)$. Define $\{a_{\pi}(\mathfrak{n}) | \text{ integral ideals } \mathfrak{n} \subset \mathfrak{O}_F \}$ as $L(s,\pi) = L(s,\pi_{\infty}) \prod_{v \in \Sigma_{\mathrm{fin}}} L(s,\pi_v) = L(s,\pi_{\infty}) \sum_{\mathfrak{n}} \frac{a_{\pi}(\mathfrak{n})}{\mathrm{N}(\mathfrak{n})^s}, \quad \mathrm{Re}\, s > 1,$ where $L(s,\pi_{\infty})$ is the gamma factor. Set $A(\pi) = D_{F/\mathbb{Q}}^n \mathrm{N}(\mathfrak{q}_{\pi})$. Then $L(s,\pi) = W(\pi) A(\pi)^{\frac{1}{2}-s} L(1-s,\pi^{\vee}).$ Let $\sigma \in (\frac{1}{2}, 1)$ and suppose π_{∞} is tempered for simplicity. For y > 0, set

$$J(y) = \frac{1}{2\pi i} \int_{(2)} L(s + \sigma, \pi_{\infty}) y^{-s} \frac{\mathrm{d}s}{s},$$
$$\tilde{J}(y) = \frac{1}{2\pi i} \int_{(2)} L(1 + s - \sigma, \pi_{\infty}^{\vee}) y^{-s} \frac{\mathrm{d}s}{s}$$

For any u > 0, the value $L(\sigma, \pi)$ is expressed as the sum of the absolutely convergent series

$$L(\sigma,\pi) = \sum_{\mathfrak{n}} \frac{a_{\pi}(\mathfrak{n})}{\mathcal{N}(\mathfrak{n})^{\sigma}} J(u\mathcal{N}(\mathfrak{n})) + W(\pi)A(\pi)^{\frac{1}{2}-\sigma} \sum_{\mathfrak{n}} \frac{\overline{a_{\pi}(\mathfrak{n})}}{\mathcal{N}(\mathfrak{n})^{1-\sigma}} \, \tilde{J}\left(\frac{\mathcal{N}(\mathfrak{n})}{A_{\pi}u}\right),$$

over the set of integral ideals $\mathfrak{n} \subset \mathfrak{O}_F$.

Sketch of the proof : By the contour shift and the functional equation,

$$\frac{1}{2\pi i} \int_{(2)} L(s+\sigma,\pi) \, u^{-s} \frac{\mathrm{d}s}{s} \\
= \frac{1}{2\pi i} \int_{(-2)} L(s+\sigma,\pi) \, u^{-s} \frac{\mathrm{d}s}{s} + \operatorname{Res}_{s=0} \left(\frac{L(s+\sigma)u^{-s}}{s} \right) \\
= \frac{1}{2\pi i} \int_{(-2)} A^{1/2-s-\sigma} L(1-s-\sigma,\pi^{\vee}) \, u^{-s} \frac{\mathrm{d}s}{s} + L(\sigma,\pi).$$

Substitute the Dirichlet series expansion and exchange the order

of integral and summation.

5.2 Rohrlich ([31])

- \bullet F : arbitrary.
- X : certain set of χ with square free conductor.
- $n = 1, 2, \pi \in \mathcal{A}_0^u(G_2)$ no restriction of ω_{π} .
- $s_0 \in \mathbb{C}$: arbitrary.

Application : The condition $k_v \ge 3$ for all $v \mid \infty$ is removed from the hypothesis of Theorem 4.3 of Shimura's paper ('78 Duke, " The special values of ...")

THEOREM 1 (Rohrlich1989)

- $\pi \in \mathcal{A}_0^u(G_n)$ (*n* = 1 or *n* = 2).
- $S \subset \Sigma_{\text{fin}}$: a finte set.
- $s_0 \in \mathbb{C}$.

There exists infinitely many $\chi \in \mathbb{X}$ unramified over S and square free conductors such that

 $L(s_0, \pi \otimes \chi) \neq 0.$

Asymptotic formula :

- $P(F, S, \pi) := \{ p : \text{ prime numbers dividing } D_{F/\mathbb{Q}} \operatorname{N}(\mathfrak{q}_{\pi}) \operatorname{N} \prod_{v \in S}(\mathfrak{p}_{v}) \}.$
- $\epsilon > 0$: small number.
- $\mathcal{Q}_{S,\pi,\epsilon}$: the set of all ideals $\mathfrak{q} \subset \mathfrak{O}_F$ s.t.

(i) N(q) is a product of distinct prime numbers outside $P(F, S, \pi)$. (ii) $\#X(q) \gg_{\epsilon} N(q)^{1-\epsilon}$.

Remark : The technical core of the paper is to show that $Q_{S,\pi,\epsilon}$ is an infinite set, which needs an extention of Bombieri-Vinogradov theorem by Murty-Murty. • For $q \in Q_{S,\pi,\epsilon}$ and a prime $r \notin P(F,S,\pi)$ not dividing q = N(q), set

$$X(\mathfrak{q},r) := \{ \psi \, (\xi \circ \mathcal{N}_{F/\mathbb{Q}})^j | \, \psi \in \mathbb{X}(\mathfrak{q}), \, 0 \leqslant j \leqslant \frac{r-3}{2} \, \},$$

where ξ is a primitive Dirichlet character of conductor r and of order $\frac{r-1}{2}$.

THEOREM 2 (Rohrlich1989)

Let
$$\sigma_0 \in \mathbb{R}$$
 such that $\frac{1}{2} \leq \sigma_0 < 1$. Then

$$\frac{1}{\#X(\mathfrak{q},r)} \sum_{\chi \in X(\mathfrak{q},r)} L(\sigma_0, \pi \otimes \chi) = L_{\infty}(\sigma_0, \pi) + o(1) \quad (\mathcal{N}(\mathfrak{q}) \to \infty)$$

for $q \in Q_{S,\pi,\epsilon}$ and r as above with $N(q)^{\epsilon\rho} < r < N(q)^{2\epsilon\rho}$ if $\epsilon > 0$ is small enough and $\rho > 0$ is chosen appropriately.

Main ingredients

- An extention of Bombieri-Vinogradov theorem by Murty-Murty (this is needed to ensure the set $Q_{\pi,S,\epsilon}$ is infinite.)
- The approximate functional equation for $L(s, \pi \otimes \chi)$.
- The Rankin-Selberg bound for the average of Fourier coefficients.
- Weil's bound of Kloostermann sum (to show the vanishing of the remainder term in the limit.)

Methodorogically, this is a direct decendent of Rorlich (1989).

- \bullet F : arbitrary.
- X: the same as in Rohrlich (1989).
- $n \ge 3$, $\pi \in \mathcal{A}_0^u(G_n)$.

s₀ ∈ C with Re s₀ ∉ [¹/_n, 1 - ¹/_n] or Re s₀ ∉ [²/_{n+1}, 1 - ²/_{n+2}] if π satisfies the Ramanujan conj.
Motivation : To persue a generalization of the Rohrlich's method to the standard *L*-function of GL(n) (and hopefully to other automorphic *L*-functions like the degree 5 *L*-functions of GSp(4)).

THEOREM 1 (Barthel-Ramakrishnan (1994)

- $\pi \in \mathcal{A}_0^u(G_n)$ with $n \ge 3$.
- $S \subset \Sigma_{\text{fin}}$: a finte set.
- $s_0 \in \mathbb{C}$ s.t. $\operatorname{Re} s_0 \notin [\frac{1}{n}, 1 \frac{1}{n}].$

Then there exists infinitly many $\chi \in \mathbb{X}$ unramified over S such that

$$L(s_0, \pi \otimes \chi) \neq 0.$$

If π satisfies the Ramanujan conjecture, then the same conclusion holds for $\operatorname{Re} s_0 \notin [\frac{2}{n+1}, 1 - \frac{2}{n+1}].$

Remark : The theorem has no conclusion for $s_0 = \frac{1}{2}$.

THEOREM 2 (Barthel-Ramakrishnan (1994)

Suppose $\operatorname{Re} s_0 \notin [\frac{1}{n}, 1 - \frac{1}{n}]$ or π is tempered and $\operatorname{Re} s_0 \notin [\frac{2}{n+1}, 1 - \frac{2}{n+1}]$. Then

$$\frac{1}{\#X(\mathfrak{q},r)}\sum_{\chi\in X(\mathfrak{q},r)}L(\sigma_0,\pi\otimes\chi) = L_{\infty}(\sigma_0,\pi) + o(1) \quad (\mathcal{N}(\mathfrak{q})\to\infty)$$

for $q \in Q_{S,\pi,\epsilon}$ and r as above with $N(q)^{\epsilon\rho} < r < N(q)^{2\epsilon\rho}$ if $\epsilon > 0$ is small enough and $\rho > 0$ is chosen appropriately (to be independent of q).
Main ingredients :

- The method is largely an adaptation of the Rohrlich's work [31]. (The use of the special moduli $Q_{S,\pi,\epsilon}$ is crucial.)
- The approximate functional equation for $L(s, \pi \otimes \chi)$.
- A bound for the average of Fourier coefficients $\sum_{N(\mathfrak{n}) < X} |a_{\pi}(\mathfrak{n})|^2 = O(N(\mathfrak{n})^{1/2 - \delta}) \text{ (JPSS theory).}$
- Deligne's bound of the hyper-Kloosterman sum of prime moduli:

$$K_n(r,q) := \sum_{\substack{x_1...x_n \equiv r \pmod{q}}} e\left(\frac{x_1 + \dots + x_n}{q}\right) \leqslant nq^{\frac{n-1}{2}}$$

this is used to show the vanishing of the remainder term in the limit.

5.4 Luo-Rudnick-Sarnak ([16])

 $\bullet F = \mathbb{Q}.$

- $\bullet X$: Dirichlet characters with prime moduli.
- For ' $\pi \boxtimes \pi^{\vee}$ ' with $\Pi \in \mathcal{A}_0^u(G_n)$ unramified at ∞

•
$$s_0 \in \mathbb{C}$$
 such that $\operatorname{Re} s_0 > 1 - \frac{2}{n^2 + 1}$.

Aim (Motivation) : To obtain a bound toward the Selberg conjecture of unramified archimedean parameters of cusp forms on GL(n) (by proving the nonvanishing on $\operatorname{Re} s > 1 - \frac{2}{n^2+1}$ of the convolution *L*-function without gamma factor.)

THEOREM 1 (Luo-Rudnick-Sarnak (1995))

• $F = \mathbb{Q}$.

- $\pi \cong \bigotimes_v \pi_v \in \mathcal{A}^u_0(G_n)$ such that π_∞ is unramified.
- $s_0 \in \mathbb{C}$ such that $\operatorname{Re} s_0 > 1 \frac{2}{n^2 + 1}$.

There exists infinitely many $\chi \in \mathbb{X}(q)$ (with prime $q \gg 0$) such that

$$L^{\infty}(s_0, (\pi \otimes \chi) \times \pi^{\vee}) \neq 0.$$

THEOREM 2 (Luo-Rudnick-Sarnak (1995))

Suppose $\operatorname{Re} s_0 \in (0,1)$ and $\epsilon > 0$. Then as $Q \to \infty$,

$$\begin{split} \sum_{\substack{q \text{ is prime} \\ Q < q \leqslant 2Q}} \sum_{\chi \in \mathbb{X}(q) - \{1\}} L^{\infty}(s_0, (\pi \otimes \chi) \times \pi^{\vee}) &= \frac{1}{2} \sum_{\substack{q \text{ is prime} \\ Q < q \leqslant 2Q}} q \\ &+ O_{s_0, \epsilon}(Q^{1 + \frac{n^2 + 1}{2}(1 - \operatorname{Re} s_0) + \epsilon}). \end{split}$$

Remark : (1) Since $\sum_{\substack{q \text{ is prime} \\ Q < q \leq 2Q}} q \sim \frac{3}{2}Q^2 / \log Q$, the *O*-term has the $_{\substack{Q < q \leq 2Q}}$ smaller order than the first term only when $\operatorname{Re} s_0 > 1 - \frac{2}{n^2 + 1}$. In this region of s_0 , the asymptotic formula shows the existence of χ such that the twist $L^{\infty}(s, \Pi \otimes \chi \times \Pi^{\vee})$ is non zero. Hence the

gamma factor $L(s, \Pi_{\infty} \times \Pi_{\infty}^{\vee})$ (independent of χ) is holomorphic on the region $\operatorname{Re} s > 1 - \frac{2}{n^2 + 1}$.

(2) The result is extended to arbitrary number fields by the same authors ([17]). For that, the use of special moduli constructed by Rohrlich ([31]) is crucial.

Main ingredients :

- An approximate functional equation for L^{∞} (JPSS theory).
- Deligne's bound of the hyper-Kloosterman sum .

THEOREM 3 (Luo-Rudnick-Sarnak (1995)) Let $F = \mathbb{Q}$ and $\pi \in \mathcal{A}_0^u(G_n)$ such that $\pi_{\infty}^{O(n)} \neq \{0\}$. Then $\pi_{\infty} \cong I_{1,...,1}(||_{\mathbb{R}}^{s_1}, ..., ||_{\mathbb{R}}^{s_n})$ with $|\operatorname{Re} s_j| \leq \frac{1}{2} - \frac{1}{n^2 + 1} \quad (1 \leq j \leq n).$

(:) From THEOREM 1, $L(s, \pi_{\infty} \times \pi_{\infty}^{\vee}) = \prod_{j=1}^{n} \prod_{i=1}^{n} \Gamma_{\mathbb{R}}(s+s_j+s_i)$ has to be holomorphic on $\operatorname{Re} s > 1 - \frac{2}{n^2+1}$.

5.5 Luo ([15])

This refines the result of Barthel-Ramakrishnan by a different method. (Use an averaging similar to that of [16]).

Novelty : For n = 3, the non-vanishing at any point on $\text{Re } s = \frac{1}{2}$ is obtained for a twist of any $L(s, \pi)$.

THEOREM 1 (Luo (2005))

 $\bullet \ F = \mathbb{Q}$

- $\pi \in \mathcal{A}_0^u(G_n)$ with $n \ge 3$.
- $S \subset \Sigma_{\text{fin}}$: a finite set over which π is unramified.
- $s_0 \in \mathbb{C}$ with $\operatorname{Re} s_0 \notin [\frac{2}{n}, 1 \frac{2}{n}]$.

Then there exists infinitly many $\chi \in \mathbb{X}(pr)$ (with different primes p, r) unramified over S such that

$$L(s_0, \pi \otimes \chi) \neq 0$$

(When n = 3, $\left[\frac{2}{n}, 1 - \frac{2}{n}\right]$ should be understood as \emptyset .)

THEOREM 2 (Luo (2005))

Let n = 3. Given a large iteger Q > 0, set

 $\mathcal{Q}^{S}(Q) = \{ pr | \ p \in (Q^{\frac{3}{4}}, 2Q^{\frac{3}{4}}], \ r \in (Q^{\frac{1}{4}}, 2Q^{\frac{1}{4}}] \text{ are primes not in } S \},$

which is a subset of [Q, 4Q]. Let $\beta \in \mathbb{C}$ be such that $\operatorname{Re} \beta \ge \frac{1}{2}$. Then

$$\left|\sum_{q\in\mathcal{Q}^{S}(Q)}\sum_{\chi\in\mathbb{X}(q)}L(\beta,\pi\otimes\chi)\right|\gg\frac{Q^{2}}{\log^{2}Q}\quad(Q\to\infty).$$

The same asymptotic formula holds for n > 3 with a slightly different choice of the set of moduli $Q^S(Q)$ and for $\operatorname{Re} \beta \ge 1 - \frac{2}{n}$.

6 Method III

- This method relies on the work of Waldspurger on the Shimura correspondence, and works only for quadratic twists of central *L*-value of PGL(2).
- The non-vanishing at $s_0 = \frac{1}{2}$ of quadratic twist is subtler .

EXAMPLE ([26]) : $f \in S_{2k}(SL_2(\mathbb{Z}))$: Hecke-eigenform.

- *K*: imaginary quadratic field.
- $\pi = \operatorname{BC}_{K/\mathbb{Q}}(\pi_f) (\in \mathcal{A}_0(G_2/K))$

Then $L(\frac{1}{2}, \pi \otimes \chi) = 0$ for all $\chi \in \mathbb{X}_F$ s.t. $\chi^2 = 1$.

6.1 Waldspurger's results

THEOREM ([41], [38] *cf.* **[26, Theorem A.2])**

•
$$\pi \cong \otimes_v \pi_v \in \mathcal{A}^u_0(G_2)$$
 with $\omega_\pi = \mathbf{1}$.

Suppose one of the following two conditions is satisfied:

(i)
$$\exists v \in \Sigma_F$$
 s.t. $\pi_v \in \Pi^u_d(G_2)$.

(ii) $\epsilon(\frac{1}{2},\pi) = 1$

Then there exists a quadratic $\chi \in X$ such that

$$L\left(\frac{1}{2},\pi\otimes\chi\right)\neq 0.$$

Conversely, if $L\left(\frac{1}{2}, \pi \otimes \chi\right) \neq 0$ for some $\chi \in X$, then π satisfies one of the above two conditions.

THEOREM 2 Waldspurger([39]), Ono-Skinner([25])

- Let $f \in S_{2k}^{\text{new}}(M, 1)$. Then,
- $\exists \delta(f) \in \{\pm 1\}$,
- $\exists N \in \mathbb{N}$ s.t. 4M|N,
- $\exists g = \sum_{n=1}^{\infty} b(n)q^n \in S_{k+\frac{1}{2}}(\Gamma_1(4N))$: non-zero

with the following properties:

(i) For each fundamental discriminant D s.t. $\delta(f)D > 0$,

$$b(D_0)^2 = \epsilon_D \frac{L\left(\frac{1}{2}, \pi_f \otimes \chi_D\right) D_0^{k-\frac{1}{2}}}{\Omega_f} \quad \text{if } (D_0, N) = 1$$

and $b(D_0) = 0$ if $(D_0, N) > 1$, where $D_0 = |D|$ if D is odd
and $D_0 = |D|/4$ if D is even, Ω_f is a "period" of f and $\epsilon_D \in \overline{\mathbb{Q}}$

(ii) There exists a number field K such that $b(D_0) \in \mathfrak{O}_K$ for all fundamental discriminant D with $\delta(f)D > 0$.

6.2 **Ono-Skinner** ([25])

$$\bullet \ F = \mathbb{Q}$$

• X: a set of Kroneker characters χ_D of $\mathbb{Q}(\sqrt{D})$.

•
$$\pi = \pi_f$$
 with $f \in S_{2k}^{\text{new}}(M, 1)$
• $s_0 = \frac{1}{2}$

Goldfeld conjectured that for $f \in S_{2k}^{new}(M)$, a positive proportion of |D| < X have the non-vanishing $L(\frac{1}{2}, \pi_f \otimes \chi_D) \neq 0$. They improve the estimate $\gg X^{1-\epsilon}$ for such |D| < X by Perelli-Pomykala(1997) and obtain $\gg X/\log X$.

THEOREM 1 (Ono-Skinner(1998)

- $S = \{p_1, \ldots, p_r\}$: prime numbers.
- $\epsilon = (\epsilon_p)_{p \in S} \in \{\pm 1\}^S$: signatures over S.
- $f \in S_{2k}^{\text{new}}(M, 1)$.
- $X(\epsilon, S) = \{\chi_D | D : \text{sqr.-free}, (D, M) = 1, \chi_D(p) = \epsilon_p (p \in S) \}.$

Then, as $X \to \infty$,

$$\#\{\chi_D \in X(\epsilon, S) | 0 < |D| \leq X, L\left(\frac{1}{2}, \pi_f \otimes \chi_D\right) \neq 0\} \gg \frac{X}{\log X}.$$

"Fundamental Lemma" (Ono-Skinner(1998)

•
$$g^* = \sum_n b^*(n) q^n \in S_{k+\frac{1}{2}}(N^*)$$
 s.t.

(i) $b^*(m) \neq 0$ for some sqr.-free m > 1 coprime to 4N,

(ii) $b^*(n) \in \mathfrak{O}_K$ for some number field K/\mathbb{Q} .

- $\delta \in \{\pm 1\}.$
- $v \in \Sigma_K$: dividing 2.
- $s_0 = \{ \operatorname{ord}_v(b^*(m)) | b^*(m) \text{ as in (i)} \}.$
- $B_{s_0} := \{ \delta m | m \text{ as in (i) with } s_0 = \operatorname{ord}_v(b^*(m)) \}.$
- $P(r) = \{D | \text{ product of } r \text{ distinct primes} \}.$

If $B_{s_0} \cap P(r) \neq \emptyset$, then

$$\#\{B_{s_0} \cap P(r) | |m| < X\} \gg \frac{X}{\log X} (\log \log X)^{r-1}$$

Main Ingredients :

- To show their 'Fundamental Lemma", they use the ℓ -adic Galois representation attached to a modular form (by Shimura, Deligne and Serre). They use the Chebotatev density theorem to seek large number of primes with some congruence among Fourier coefficients ; the bound $\gg X/\log X$ comes from this.
- Invoke a result by Friedberg-Hoffstein ([6]) to see $b(|D_1|) \neq 0$ for at least one $\chi_{D_1} \in X(\epsilon, S)$.
- Use a quadratic twist of g to obtain g^* with level coprime to D_1 and with Fourier coefficients supported on m > 1 such that

 $\chi_{\delta m}(p) = \epsilon_p (\forall p \in S)$. (The Fundamental Lemma should be applied to this g^*).

7 Method II

This method is based on another work of Waldspurger related to the twisted central *L*-value

$$L\left(\frac{1}{2}, \operatorname{BC}_{K/F}(\pi) \otimes \chi\right), \quad \pi \in \mathcal{A}_0(G_2/F).$$

Waldspurger ([40, Théorème 2]

- B/F : a quaternion algebra.
- $\pi \in \mathcal{A}_0(G_2)$ s.t. \exists Jacquet-Langlands transfer $JL_B(\pi)$ to $B^{\times}(\mathbb{A})$.
- $\bullet \ K \hookrightarrow B$: a quadratic extension of F embedde into B
- χ : a Hecke character of \mathbb{A}_K^{\times} s.t. $\chi | \mathbb{A}_F^{\times} = \omega_{\pi}$.

Then

$$\ell_{K,\chi}(\psi) := \int_{\mathbb{A}_F K^{\times} \setminus \mathbb{A}_K^{\times}} \psi(t) \chi(t)^{-1} \, \mathrm{d}t \neq 0 \quad (\exists \psi \in \mathrm{JL}_B(\pi))$$

if and only if

(i)
$$\dim_{\mathbb{C}} \operatorname{Hom}_{B_{v}^{\times}} \left(\sigma_{v}^{\prime}, \operatorname{Ind}_{K_{v}^{\times}}^{B_{v}^{\times}}(\chi_{v}) \right) \neq 0 \ (\forall v \in \Sigma_{F}),$$

(ii) $L\left(\frac{1}{2}, \operatorname{BC}_{K/F}(\pi) \otimes \chi\right) \neq 0$

L-value formula :

(Under a correct condition of local ϵ -factors and and local invariants of B), the Waldspurger's formula and its refinements ([7], [42], [43] for CM case, [27] for real quadratic field K/\mathbb{Q}) take the form

$$L\left(\frac{1}{2}, BC_{K/F}(\pi) \otimes \chi\right) = C \frac{\|f\|^2}{\|\psi_f\|^2} \left|\ell_{K,\chi}(\psi_f)\right|^2$$

with a positive constants C, where $(f, \psi_f) \in \pi \times JL_B(\pi)$ is a certain pair of test vectors.

7.1 Vatsal ([35])

- $K = \mathbb{Q}(\sqrt{-D})$: imaginary quadratic field of discriminant -D
- X : anti-cyclotomic char's of p-power conductor ((p, 2D) = 1).

•
$$\pi = \operatorname{BC}_{K/\mathbb{Q}}(\pi_g)$$
, where $g \in S_2^{\operatorname{new}}(N)$ with $(p, N) = 1$.
• $s_0 = \frac{1}{2}$.

Aim (Motivation) : (non CM case for) Mazur's conjecture (on the finite generation of the anti-cyclotomic part of E(K) for an elliptic curve E/\mathbb{Q} with K varying along a tower of ray class fields of p-power conductor over an imaginary quadratic field.)

Theorem 1 (Vatsal([35])

- N^+ : an integer.
- N^- : square free prime to N^+ , product of odd number of primes inert in K.
- p : a prime s.t. $(p, 2DN^+N^-) = 1$.
- $\mathbb{X}^-(p^\infty)$: the set of all those anti-cyclotomic finite order characters of K with p-power conductor.
- $g \in S_2^{\text{new}}(N^+N^-)$: Hecke-eigen form.

Suppose (i) p is ordinary for g or (ii) p does not divide $h_K = \# \operatorname{Cl}_K$. Then $L\left(\frac{1}{2}, \operatorname{BC}_{K/\mathbb{Q}}(g) \otimes \chi\right) \neq 0$ except for finitely many $\chi \in \mathbb{X}^-(p^\infty)$. For simplicity, we suppose $h_K = 1$ (thus D is a prime) here to simplify the statement of the next theorem.

Theorem 2 (Vatsal([35])

For $\chi \in X$, let $\chi = \chi_t \chi_w$ be the decomposition to the tame part χ_t (of order prime to p) and the wide part χ_w (of p-power order). Set $\mathbb{X}^-(p^n)[\chi_t]$ be the set of $\chi \in \mathbb{X}^-(p^\infty)$ of conductor p^n with the fixed tame part χ_t . Then

$$\frac{1}{p^{n-1}} \sum_{\chi \in \mathbb{X}^{-}(p^{n})[\chi_{t}]} \frac{L\left(\frac{1}{2}, \mathrm{BC}_{F/\mathbb{Q}}(g) \otimes \chi\right)}{\Omega_{g}} = \left(1 + \chi_{t}(\mathrm{Frob}(\mathfrak{D}))\frac{a_{g}(D)}{D+1}\right) \|\psi_{g}\|^{2} + \frac{1}{2}\sum_{\chi \in \mathbb{X}^{-}(p^{n})[\chi_{t}]} \frac{L\left(\frac{1}{2}, \mathrm{BC}_{F/\mathbb{Q}}(g) \otimes \chi\right)}{\Omega_{g}} = \left(1 + \chi_{t}(\mathrm{Frob}(\mathfrak{D}))\frac{a_{g}(D)}{D+1}\right) \|\psi_{g}\|^{2} + \frac{1}{2}\sum_{\chi \in \mathbb{X}^{-}(p^{n})[\chi_{t}]} \frac{L\left(\frac{1}{2}, \mathrm{BC}_{F/\mathbb{Q}}(g) \otimes \chi\right)}{\Omega_{g}} = \left(1 + \chi_{t}(\mathrm{Frob}(\mathfrak{D}))\frac{a_{g}(D)}{D+1}\right) \|\psi_{g}\|^{2} + \frac{1}{2}\sum_{\chi \in \mathbb{X}^{-}(p^{n})[\chi_{t}]} \frac{L\left(\frac{1}{2}, \mathrm{BC}_{F/\mathbb{Q}}(g) \otimes \chi\right)}{\Omega_{g}} = \left(1 + \chi_{t}(\mathrm{Frob}(\mathfrak{D}))\frac{a_{g}(D)}{D+1}\right) \|\psi_{g}\|^{2} + \frac{1}{2}\sum_{\chi \in \mathbb{X}^{-}(p^{n})[\chi_{t}]} \frac{L\left(\frac{1}{2}, \mathrm{BC}_{F/\mathbb{Q}}(g) \otimes \chi\right)}{\Omega_{g}} + \frac{1}{2}\sum_{\chi \in \mathbb{X}^{-}(p^{n})[\chi_{t}]} \frac{L\left(\frac{1}{2}, \mathrm{BC}_{F/\mathbb{Q}}(g) \otimes \chi\right)}{\Omega_{g}} = \left(1 + \chi_{t}(\mathrm{Frob}(\mathfrak{D}))\frac{L}{D+1}\right) \|\psi_{g}\|^{2} + \frac{1}{2}\sum_{\chi \in \mathbb{X}^{-}(p^{n})[\chi_{t}]} \frac{L\left(\frac{1}{2}, \mathrm{BC}_{F/\mathbb{Q}}(g) \otimes \chi\right)}{\Omega_{g}} + \frac{L\left(\frac{1}{2}, \mathrm{BC}_{F/\mathbb{Q}}(g) \otimes \chi\right)}{\Omega_{g$$

where ψ_g is a normalized Jacquet-Langlands companion on $\operatorname{Cl}(B)$ of g.

Main ingredients :

- *B* is the definite quaternion over \mathbb{Q} and consider Eichler orders $R \subset B$ of level N^+ . The JL companion ψ_g of g lives on the finite set $\operatorname{Cl}(B) = B^{\times} \setminus \hat{B}^{\times} / \hat{R}^{\times}$.
- Gross's formula ([7]) to express the *L*-values by the square value of the function ψ_g at a χ -twisted sum of "Heeger points" P = (f, R) over Cl(B).
- Equidistribution of Heeger points of *p*-power conductor (this is used to compute the main term coming from the trivial character of *K*).

- Ratner's theorem on unipotent flows on (*p*-adic) Lie groups (this is used to show the vanishing of the remainder terms in the limit.)
- Shimura's reciprocity of $L(\frac{1}{2}, g \times \theta_{\chi})$ under Galois twists is used to extend the non-vanishing to all relevant characters but for finitely many exception (an idea introduced by Rohrlich [30]).

This is largely an expository article. They explain several ways to obtain a quantitative non-vanishing result for the "non-abelian" twists

$$L(\frac{1}{2}, f \times \theta_{\chi}), \quad \chi \in \widehat{\mathrm{Cl}_K}$$

of L(s, f) by the theta series θ_{χ} induced from a class group character χ of an imaginary quadratic field $\mathbb{Q}(\sqrt{-D})$ as D grows, where $\theta_{\chi}(z) = \sum_{(0) \neq \mathfrak{a} \subset \mathfrak{O}_K} \chi(\mathfrak{a}) q^{\mathcal{N}(\mathfrak{a})} \in S_1(\Gamma_0(D), \chi_D).$

(Strictly speaking, this is out of the framework of this talk.)

Theorem (Michel-Venkatesh (2005)

- $f \in S_2^{\text{new}}(q, 1)$ with prime level q.
- $K = \mathbb{Q}(\sqrt{-D})$: an imaginary quad. field of disc. -D. s.t. q is

inert in K.

Then

$$\sum_{\chi \in \widehat{\mathrm{Cl}(D)}} L\left(\frac{1}{2}, f \otimes \theta_{\chi}\right) \gg_{\epsilon, f} D^{\frac{1}{2}-\epsilon}, \quad D \to \infty.$$

For any $0 < \delta < 1/2700$,

$$\#\{\chi\in\widehat{\operatorname{Cl}_K}|L\left(\tfrac{1}{2},f\times\theta_\chi\right)\neq 0\,\}\gg_{\delta,f}D^\delta,\quad (D\to\infty).$$

Skech of the proof :

- B: the definite quoternion ramified at ∞q .
- From Gross's formula

$$\sum_{\chi \in \widehat{\mathrm{Cl}(D)}} L\left(\frac{1}{2}, f \otimes \theta_{\chi}\right) = \frac{h_K \|f\|^2}{4\sqrt{D}} \sum_{\sigma \in \mathrm{Cl}(D)} |\psi_f(x_{\sigma})|^2$$

where $\psi_f : \mathrm{Cl}(B) \to \mathbb{C}$ is an appropriate JL companion of f such that $\|\psi_f\|^2 = 1$.

• Use the fact (Iwaniec) that the points $\{x_{\sigma} | \sigma \in Cl(D)\}$ become equidistributed on Cl(B) to conclude

$$h_K^{-1} \sum_{\sigma} |\psi_f(x_{\sigma})|^2 = (1 + o(1)) ||\psi_f||^2, \quad D \to \infty.$$

• Use Siegel's bound of class numbers $h_K \gg_{\epsilon} D^{1/2-\epsilon}$ to obtain

the lower bound from the asymptotic formula:

$$\sum_{\chi \in \widehat{\mathrm{Cl}(D)}} L\left(\frac{1}{2}, f \otimes \theta_{\chi}\right) \sim \frac{h_K^2 \|f\|^2}{4\sqrt{D}} \gg_{\epsilon} \frac{D^{1-\epsilon}}{D^{1/2}} = D^{1/2-2\epsilon}$$

• Invoke the subconvex bound $L(1/2, f \times \theta_{\chi}) \ll_{f} D^{1/2-\delta}$ for any $0 < \delta < 1/1100$ (P. Michel).

8 Method IV

Based on the study of the double Dirichlet series

(χ_d : quadratic Dirichlet character assocoated to $F(\sqrt{m})/F$)

- 8.1 Friedberg and Hoffstein ([6])
- F : arbitrary
- X : A set of quadratic characters
- n = 2, $\pi \in \mathcal{A}_0(G_2)$ (not nec. unitary)
- $s_0 = \frac{1}{2}$

THEOREM (Friedberg and Hoffstein ([6])))

- $\bullet~S$: a finite set of places
- $\xi \in \mathbb{X}$: a fixed quadratic character
- $\Psi(S;\xi) = \{\chi \in \mathbb{X} | \text{ quadratic, } \xi_v = \chi_v (\forall v \in S) \}$
- $\pi \in \mathcal{A}_0(G_2)$ (not nec. unitary)

If (i) π is not selfdual or (ii) π is self-dual, and suppose $\epsilon(\frac{1}{2}, \pi \otimes \chi) =$

1 for some $\chi\in\Psi(S;\xi),$ then there exists infinitely many $\chi\in\Psi(S;\xi)$ such that

$$L(\frac{1}{2},\pi\otimes\chi)\neq 0.$$

- Bump, D, Friedberg, S., Hoffstein, J., Nonvanishing theorems for L-functions of modular forms and their derivatives, Invent. Math. 102 (1990), 543-618.
- Chinta, G,. Friedberg, S., Hoffstein, J., *Asymptotics for sums of twisted L-functions and applications*, In Automorphic representations, L-functions and Applications: progress and perspective, 75-94, Ohaio State Univ. Math. Res. Inst. Publ., 11, de Gruyter, Berlin, 2005.
- Bump, D, Friedberg, S., Hoffstein, J., Sums of twisted GL(3)

automorphic L-functions, Contributions to Automorphic forms, Geometry and Number Theory, Chapter 7, The Johns Hopkins University Press, Baltimore and London, 2004.

References

[1] Balasubramanian, R., Murty, V. K., Zeros of Dirichlet Lfunctions, Ann. Scient. Ecole Norm. Sup. 25 (1992), 567-615.
[2] Barthel, L., Ramakrishnan, D., A nonvanishing result for twists of L-functions of GL(n), Duke Math. J. 74 No.3 (1994), 681-700. [3] Bump, D, Friedberg, S., Hoffstein, J., Nonvanishing theorems for L-functions of modular forms and their derivatives, Invent.
 Math. 102 (1990), 543-618.

[4] Bump, D, Friedberg, S., Hoffstein, J., Sums of twisted GL(3) automorphic L-functions, Contributions to Automorphic forms, Geometry and Number Theory, Chapter 7, The Johns Hop-

kins University Press, Baltimore and London, 2004.

[5] Chinta, G., Friedberg, S., Hoffstein, J., Asymptotics for sums of twisted L-functions and applications, In Automorphic representations, L-functions and Applications: progress and perspective, 75-94, Ohaio State Univ. Math. Res. Inst. Publ.,
11, de Gruyter, Berlin, 2005.

 [6] Friedberg, S., Hoffstein, J., Nonvanishing theorems for automorphic L-functions on GL(2), Ann. Math. (2) 142 No.2 (1995), 385-423.

[7] Gross, B.H., Heights and the special values of L-series, Canad. Math. Soc. Proc. 7 (1987), 115-187.

[8] Hoffstein, J., Luo, W., Nonvanishing of L-series and the conbinatorial sieve,

[9] Jacquet, H., Shalika, J. A., A non vanishing theorem for zeta functions for GL_n , Invent. Math. 38 (1976), 1-16.

 [10] Jacquet, H., Piatetski-Shapiro, I., Shalika, J., Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), 199-214.

[11] Jacquet, H., Piatetski-Shapiro, I., Shalika, J., Rankin-Selberg convolutions, Amer.J. Math. 105 (1983), 367–464.

[12] Jacquet, H., Piatetski-Shapiro, I., Shalika, J., On the Euler products and the classification of automorphic representations I, Amer. J. Math, 103 No.3 (1981), 499-558.
[13] Jutila, M., it On the mean value of L(¹/₂, χ) for real characters,

Analysis 1 (1981), 149-161.

[14] Kudla, S. S., The local Langlands correspondence: The nonarchimedean case, PSPM 55 (1994), Part 2, 365-391.

- [15] Luo, W., Nonvanishing of L-functions for $GL(n, \mathbb{A}_{\mathbb{Q}})$, Duke Math. J. 128 No.2 (2005), 199-207.
- [16] Luo, W., Rudnick, Z., Sarnak, P., On Selberg's eigenvalue conjecture, GAFA 5 No.2 (1995), 387-401.
- [17] Luo, W., Rudnick, Z., Sarnak, P., On the generalized Ramanujan conjecture for GL(n), PSPM 66 No.2 (1999), 301-305.

[18] Masri, R., Quantitative nonvanishing of L-series associated to canonical Hecke characters, IMRN, 2007.

[19] Masri, R., Yang, T. H., Nonvanishing of Hecke L-functions for CM-fields and ranks of abelian varieties, G.A.F.A 21 No.3 (2011), 648-?.

 [20] Michel, P., Venkatesh, A., Heegner points and non-vanishing of Rankin/Selberg L-functions, Clay Mathematics Proceedings 7 (2007), 169-183.

[21] Montgomery, H., Rohrlich, D., On the L-functions of canonical Hecke L-functions, Math. Res. Lett. 7 (2000), 263-277.
[22] Murty, M.R., Murty, V. K., Non-vanishing of L-functions and

applications, Progress in Mathematics 157, Verlag, Basel-

Boston-Berlin, Birkhäuser (1997).

- [23] Murty, V.K., A non-vanishing theorem for quadratic twists of modular L-functions,
- [24] Murty, M. R., Murty, V.K., Mean values of derivatives of modular L-series, Ann. Math. (2) 133, No.3 (1991), 447-475.
- [25] Ono, K., Skinner, C., Non-vanishing of quadratic twists of modular L-functions, Invent. Math. 134 (1998), 651-660.
- [26] Piatetski-Shapiro, I., Work of Waldspurger, In Lie Group Representations II, (SLNM 1041), Berlin-Heiderberg-New York: Springer 1983.

[27] Popa, A. A., Central values of Rankin L-series over real quadratic fields, Composit. Math. 142 (2006), 811-866.

[28] Rohrlich, D., The nonvanishing of certain Hecke L-functions at the center of the critical strip, Duke. Math. J. 47 (1980), 223-232.

[29] Rodriguez-Villegas, F., Yang, T.H., Central values of Hecke L-functions of CM-number fields, Duke Math. J. 98 (1999), 541-564.

[30] Rohrlich, D. E., On elliptic curves and cyclotomic towers, Invent. Math. 75 (1984), 409-423.

[31] Rohrlich, D. E., Nonvanishing of L-functions for GL(2), Invent.
 Math. 97 (1989), 381-403.

[32] Speh, B,. Unitary representations of $Gl(n, \mathbb{R})$ with non-trivial (\mathfrak{g}, K) -cohomology, Invent.Math. 71 (1983), 443-465.

 [33] Tadic, M., Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case),
 Ann. Sci.École Norm. Sup. 19 (1986), 335-382.

[34] Tadić, M., $GL(n, \mathbb{C})^{\vee}$ and $GL(n, \mathbb{R})^{\vee}$, Contemporary Math. Amer. Math. Soc., Providence, R.I., 2009.

[35] Vatsal, V., Uniform distribution of Heegner points, Invent.

Math. 148 No.1 (2002), 1-46.

- [36] Vatsal, V., Special values of anticyclotomic L-functions, Duke Math. J. 116 No.2 (2003), 219-261.
- [37] Vogan, D., The unitary dual of GL(n) over an archimedean field, Invent. Math. 83 (1986), 449-505.
- [38] Waldspurger, J-L,. Correspondance de Shimura, J. Math. Pures Appl. 59 (1980), 1-133.
- [39] Waldspurger, J-L,. Sur les coefficients de Fourier des formes modulaires dew poids demi-entier, J. Math. Pures et Appl. 60 (1981),375-484.

 [40] Waldspurger, J-L., Sur les valeurs de certaines fonctions L automorphes en leur centre de symetrie, Compos. Math. 54 (1985), 172-242.

- [41] Waldspurger, J-L., Correspondances de Shimura et quaternions, Forum Math. 3 (1991), 219-307.
- [42] Zhang, S., Gross-Zagier formula for GL₂, Asian J. Math. 5 (2001), 183-290.
- [43] Zhang, S., Gross-Zagier formula for GL(2) II, Heegner Points and Rankin L-series, Math. Sci. Res. Inst. Publ., 49, Cambridge Unv. Press, Cambridge, 2004, 191-241.