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1 The Standard L-functions of GL(n)

e [ : an algebraic number field.

oY =25, UXx: the set of places of F.
e D : the ring of integers of F.

e Ar : the ring of adeles of F.

e Ay(Gy,) : the set of irreducible cuspidal automorphic represen-

tations of GL,(Ar). (G, := GL(n))

o Aj(Gy) : the set of 7 € A)(G)) whose central character w; is

unitary.



1.1 The Vogan-Tadic classification

([33], [34], [37], a convenient reference is [14])

Fix v € Y. Set

[M(Gn(Fy)) = {irreducible smooth unitary rep’s of G, (F,)}/ ~,
[15(Gn(Fy)) = {6 € II"(Gn(Fyp))| 0 is square integrable },
[ (Gn(Fy)) .= {o € IY(Gn(Fy))| o is supercuspidal }(when v < 00)

e The unramified twist of © € I1(G,,(F})) by s € C is defined as

m(s) : g — |det g|°m(g).



o (Discrete series) II(Gn(Fy)) = {Q(o,d)| o € Il (G, /q(Fv)), dIn

where m = n/d,

Im...m (O’ (1%0[) O (B%d) e, O (%)) — Q(o,d).

unique quotient

e (Speh module) For ¢ € II}{(Gn(Fy)) and d > 2, the module sp(9, d)

is an element of 11%(G,,,;(F,)) defined as

I 0451, 6(453), ..., 6(154 - 5,d).
m,...,m( ( 2 )7 ( 2 >’ ’ ( 2 )) the Langlands quotient Sp( 7 )

e (Complementary series) For 6 € II{(Gm(Fy)), d € N and a €
(0,1/2), set

u(8,d, @) = I (sp@, 2)(a), sp(G d><—a>),

where we set sp(d,1) = 4.



e B(n) : all possible rep’s of G,,(F;,) among all those 0, sp(J, d) and

u(0, d, o) constructed above.

THEOREM (Vogan-Tadic)

The full unitary dual of G, (F}) is given as

1(Gn(F)) = {nyoomy (01, 0v) 0 € Blnj) (1< j <)}/ ~

The multiset {0y, ...,0,} determines the class of 7 uniquely.

e generic < Blue blocks ¢ {0,}.
e tempered < Blue blocks & Green blocks ¢ {0/ }.



1.2 The standard L-functions

o T = Quex, M € Ag(GLy), the standard L-function is defined as

= H L(s,m,) (abs. conv. on Res > 0).

The local factor L(s,m,) is described as follows:

(i) If I(61,...,0r) = my (Langlands quoteint) with 0; € IT{(Gy,(£7)),

L(s,my) HL85



(i) If v € X, and § = Q(o,d) with o € [ls.(Gyn(Fy)) (n = dm), then
L(s,0) =1L (S—I—%,U) .
If v € Yoo and 6 € I[}(G(Fy)) (m = 1,2),

'R(s+v+e), (O=xvelveC eec{l1}),
I L T R (0,1}

['c (s+%+y), 0=D,;(veC leN).
(iii) Let v € Xg,. For o € Il (G (Fy)),

f1—'*—1 n=10=1),
L(870>:<( qy °) ( )

1 (otherwise).

\



Basic properties of the standard L

Let 7 € Aj(Gy) with n > 1. Then

(1) L(s,m) =], L(s, ) conv. abs. on Res > 1.
(2) L(s,7) (Res > 1) has a holomorphic continuation to C.
(3) L(s,7) and L(1 — s,7") satisfies
L(s, ) = W(m)(DipjoN(an) /> L(1 = s,7Y), (1)
where q; is the conductor of 7 and W (r) = e(%,w) e Clis the
root number.

(3) The holomorphic function L(s,7) is bounded on any vertical

strip {0 € C|a < Res < b}.



THEOREM (Jacquet-Shalika [9])
Let 7 € A§(Gr). Then L(s,7) # 0 on the edge of the critical strip

Res =0, 1.

THEOREM (Shalika)

Any © € Ay(G),) is globally generic.
If = ®,m,, then, for each v € X, 7, is a generic representation
of G (Fy), i.e.,

dimg Homg, (g (7o, lendgné?))(é’)) =1,

where U, (F},) is the upper-triangular maximal unipotent subgroup

and 6 is the character ,( ;”:—11 wjjv1) of Uy(Fy).



A consequence of genericity and the Vogan-Tadic classification

Suppose 7 € A{(G). Then 35S C X (finite set) s.t.
GLn (D)
'£{0}  (WweTg - 9).

e For v ey — 5,

w2 0 (D 600 G () )
with x; € F;* (unramified), and v, € (0,1/2).
e For v € 5,

70 2 Iy ({07191 A050)), 85— Vi)
with 0, € I11(Gp (Fy)) and v, (O,%).

Remark : The generalized Ramanujan conj. for 7 < {v;} is empty (Vv € ¥p).

(10)



Holomorphy of local L-factors

Let 7 = @y € Af(Gn).

i) For v € X1, there exists 0, > 0 such that L(s,m,) has neither
F

zeros nor poles on Re > 1/2 — 0,,.

(ii) If 7, is tempered, then L(s,m,) has neither zeros nor poles on

Res > 0.

(11)



A remark on trivial zeros

For a finite set S C X,

= ][ L(s,m) (Res>1).
vgS

Let sy € C with 3 < Resy < 1. Then

L(so,m) £0 <= L(so,m) #0

If 7¢ = ®,cqmy is tempered, the same is true for 0 < Re sy < 1.

This follows from the local holomorphy of L-factors. Due to the lack of the
gamma factors, L>°(s, 7) has more zeros than L(s, 7); the extra zeros are called

the trivial zeros of L>=(s, ) (¢f. s = —2,— . for ((s). )

(12)



2 The problem

e X : the set of continuous characters x : A7 /F*F — cl.
e qy : the conductor of x € X.
o For q C Op, X(q) = {x eX|qy=9q}.

Example| : When F' = Q and ¢ € N, X(q) is the primitive even

Dirichelet characters modulo g.

(13)



PROBLEM (nonvanishing of twisted L-values)

o AC Aj(Gy) : a class of cuspidal representations
e X C X : a (large) subset.

Given a ™ € A and a point sy € C,

(1) does there exist y € X such that L(sy,m® x) #0 ?

(non-vansihing)

(2) For m € A, how the cardinarity

#ix € X NX(q)|L(sp, ™ ® x) # 0}

grows as N(q) — co ? (quantitative non-vanishing)

(14)



Remarks| :

e This is non-trivial only when 0 < Re sy < 1.

e This is a problem on the classes A and X (not on individual y).
(The nature of A and X is of great relevance.)

e GRH predicts L(sy, ™ ® x) # 0 unless Re s) = %

o If m € Aj(G2,) is regular algebraic, s5) = % is the only possi-
ble critical point for which the non-vanishing of the L-value has
to be proved. In Namikawa’s talk, for the non-triviality of Ash-
Ginzburg’s p-adic L-function, the non-vanshing L(%, T®x)# 0 for
some y € X(p™) is needed. (For GL(2), this is OK by Rohrlich’s

result.)

(15)



3 Known results

e GL(1) : For Dirichlet characters: [13], [1] etc.,
For canonical Hecke characters of CM-fields : [28], [?], [21],
[29], [19] etc.

e GL(2) : [30], [31], [3], [6]. [23], [24], [8]. [25], [20] etc. Most
of these works deal with nonvanishing at s) = % (We remark

that [31] and [6] consider the problem at an arbitrary point s).

(16)



e GL(n) with n > 2: [2], [15], [16], [17], [5], [4]
The non-vanishing result for the central point sj = % seems very

few. As far as the speaker can find, there are at least two such

results:

—For m € Ay(G3) over F = Q by Luo ([15]).

—For Ad(7) (7w € Ayp(G3)) over F = Q by Bump-Friedberg-Hoffstein
(14D).

There seems no non-vansihing results along y € X(p).

(17)



METHODS| :

e The approximate functional equation + a bound of (hyper-)Kloosterman
sums (due to Weil and Deligne). [30], [31], [23], [24], [2], [15], [16], [17].
e (For quadratic twists)

Waldspurger’s result on Shimura correspondence + An estimation of Fourier

coefficient of half-integral weight forms. ([25])

e (For anti-cyclotomic twists)
Waldspurger type formula identifying the central L-value (degree 4 Euler
product) with some toric periods (Waldspurger, S. W. Zhang, Gross) +
Equidistribution of Heeger divisors on Shimura varieties. ([35], [36], [20]

e Metaplectic Eisenstein series and the related multiple Dirichlet series. [3],

[6], [4], [5]-

(18)



4 Method |

The L-value is captured by the Hecke's zeta integral.
EXAMPLE : f =) a(n)q" € So(SLa(Z)).

Le(s)L(s, f)
= [ st
—/ufiyysd—y+/oofiy

/ 2k sdy / iyl d_

fiy)
®.0
—27Ty Qk S —2my . s4Y
R AN T [ ey
i -

(19)



4.1 Rohrlich([30])

o ['=0Q
e X : Dirichlet characters with bounded ramification locus.

on=2,1=m;€ AlGy) with f € SIV(I(N), )

DO —

.SO:

(20)



THEOREM 1 (Rohrlich (1984))
o f €S53 (o(N), 1),

e P : a finite nonempty set of prime numbers not dividing V.

Then there exists ¢y € N such that

L (%,ﬂ'f ®X) # 0 for all y € X(q) with ¢ = H PP > q.
peP

(21)



THEOREM 2 (Rohrlich (1984))
o /€ S5 (Lo(IN), ).
e P : a finite nonempty set of prime numbers not dividing V.
e F'=Q(a¢(n)|(n, N)=1) the Hecke field of f.
o F(x) = F(x(n)|n € N).
Then,
1
L(3:f©x7)=1+0(1), (¢ o0
o H o EEIeN)=1rel) @ed
F—alg( (X),C)

for y € X(q) with g = Hpeppep > qo

(22)



Main ingredients| :

e A truncated expression of Hecke’s zeta integral.
e The two bounds concerning Yy (n) = [F(x): F]7'S2_x%(n) :
inf{n > 2| xav(n) # 0} > ¢’ (with some v > 0),
#{n € [1,q]| xav(n) # 0} = O(1)
uniform in x and ¢ = ¢,.
e Weil’'s bound on the Kloosterman sum.

e Shimura’s algebraicity is used to ensure L (%, f® X) = 0 if and
only if L (%, 7% XU) £ 0.

(23)



Remark: The asymptotic formula implies the non-vanishing of the
L-values for some character-twist of sufficiently large conductor.
Shimura’s result is used to claim the non-vanishing for all twists

with the same large conductors.

The following application is given:

THEOREM 3 (Rohrlich (1984))
Let £/Q be an elliptic curve with CM by the integer ring of an

imaginary quadratic field. Let P be a finite set of primes over
which F has good reduction. Let L/QQ be the maximal abelian
extension unramified outside P U {oco}. Then E(L) is finitely gen-

erated.

(24)



Novelty| :

e Generic non-vanishing along y with p-power conductors.

e Theorem 1 automoatically implies the simultaneous non-vanishing

result :
® f’L S SéleW(NZawz) (Z — 17 e 7T)'
e P : a finite set of primes not dividing N{... N,.

Then there exists ¢; such that
L(%,fi@X) %0 foralll1<i<r

and for all y € X(q) with ¢ = Hpéppep > q.

(25)



5 Method I’

The L-value is captured by the approximate functional equation.

5.1 Approximate functional equation

Let 7 € Aj(Gy). Define {ar(n)|integral ideals n C O } as

ar(n
L(s,m) = L(s,Txo) H L(s,my) = SWOO)ZN?EI)Z, Res > 1,
UEZﬁn n

where L(s, o) is the gamma factor. Set A(7) = F/Q N(qx). Then

L(s,m)=W(m) A(W)ﬁ_sL(l —s, ).

(26)



Let o € (%, 1) and suppose 7 is tempered for simplicity. For y > 0,

set

Ty =gk [ L+ o7l
(2) 5

Jy) = 2 /( N T

S

For any v > 0, the value L(o,7) is expressed as the sum of the

absolutely convergent series

Lio,7) = Y G N + WAt Yo 207 (S8

over the set of integral ideals n C Op.

(27)



Sketch of the proof : By the contour shift and the functional equa-

tion,
1 d
— L(s+o,7) uS=
211 J (2) S
1 d L(s+o)u™*®
- — L(s+o,7) u 5 + Resg—g ( (5 1 o) )
211 J(-2) S S
1 1/2—s—0 vy, —sds
= — A Ll—s—on")u "—+ L(o,m).
211 J(—2) S

Substitute the Dirichlet series expansion and exchange the order

of integral and summation.

(28)



5.2 Rohrlich ([31])

e [ : arbitrary.
e X : certain set of y with square free conductor.
on =1,2, m € Aj(G2) no restriction of w;.

e sp € C : arbitrary.

Application| : The condition £k, > 3 for all v|co is removed from

the hypothesis of Theorem 4.3 of Shimura’s paper (‘78 Duke, *“

The special values of ...”)

(29)



THEOREM 1 (Rohrlich1989)
o mc Aj(Gp) (n=1or n=2).

e 5 CXg, : a finte set.

o 50 € C.
There exists infinitely many y € X unramified over S and square

free conductors such that

L(SQ, T X) = 0.

(30)



Asymptotic formula| :

o P(F,S,m) = {p: prime numbers dividing D ;g N(qx) N[ [,cs(pv) }-
e ¢ > ( : small number.

e Qg the set of all ideals ¢ C O s.t.

(i) N(q) is a product of distinct prime numbers outside P(F, S, 7).
(ii) #X(q) > N(ag)' .

Remark : The technical core of the paper is to show that Qg . is
an infinite set, which needs an extention of Bombieri-Vinogradov

theorem by Murty-Murty.

(31)



e For g € Qg and a prime r ¢ P(F,S,7) not dividing ¢ = N(q),
set

X(q,7) = {v (§oNpjgl|v € X(q), 0 <j <F2Y,
where £ is a primitive Dirichlet character of conductor r and of

order T—gl

THEOREM 2 (Rohrlich1989)

Let 0y € R such that % < og<1. Then

1
#X(q,7) ; L(00,7 ® x) = Loo(00,7) +0(1)  (N(g) — 00)
x<€X(q,r)

for g € Qg and r as above with N(q) <r < N(q)%" if € > 0 is

small enough and p > 0 is chosen appropriately.

(32)



Main ingredients

e An extention of Bombieri-Vinogradov theorem by Murty-Murty

(this is needed to ensure the set 9 ¢ is infinite.)
e The approximate functional equation for L(s, m ® ).

e The Rankin-Selberg bound for the average of Fourier coeffi-

cients.

e Weil’'s bound of Kloostermann sum (to show the vanishing of

the remainder term in the limit.)

(33)



5.3 Barthel and Ramakrishnan ([2])

Methodorogically, this is a direct decendent of Rorlich (1989).
e [ : arbitrary.
e X: the same as in Rohrlich (1989).

n =3, e Aj(Gp).

o 5s) € C with ReSO€[1 1——]

or Re sy & [+ if 7 satisfies the Ramanujan con,j.

21,1 — -2

Motivation|: To persue a generalization of the Rohrlich’s method

to the standard L-function of GL(n) (and hopefully to other au-

tomorphic L-functions like the degree 5 L-functions of GSp(4)).

(34)



THEOREM 1 (Barthel-Ramakrishnan (1994)
o 7€ Af(Gp) with n > 3.

e S C Y, : a finte set.
e s) € Cs.t. Resy & [%, 1 — %]
Then there exists infinitly many v € X unramified over S such

that
L(sp, ™ ® x) # 0.

If 7 satisfies the Ramanujan conjecture, then the same conclusion

holds for Re s ¢ [n+1’ nlﬂ]

Remark : The theorem has no conclusion for sj = %

(35)



THEOREM 2 (Barthel-Ramakrishnan (1994)

Suppose Re s & [1 1——] or 7 is tempered and Re s & [ l—nlﬂ].
Then
1
Y L(0g,m®X) = Loo(og, m) +0o(1)  (N(q) = o0)
#X(q,7)
xeX(q,r)

for g € Qg and r as above with N(q) <r < N(q)%" if € > 0 is
small enough and p > 0 is chosen appropriately (to be independent

of q).

(36)



Main ingredients| :

e The method is largely an adaptation of the Rohrlich’s work [31].

(The use of the special moduli Qg , . is crucial.)
e The approximate functional equation for L(s, m ® ).
e A bound for the average of Fourier coefficients

> Nm<x lax(m)[* = O(N()1/27%) (JPSS theory).

e Deligne’s bound of the hyper-Kloosterman sum of prime moduli:

1
[(n<7“7 q) — Z e (Qil-l—..q.—l—ﬂfn) < nan

ri..xp=r (mod q)

this is used to show the vanishing of the remainder term in the

limit.

(37)



5.4 Luo-Rudnick-Sarnak ([16])

o [' =0Q).
e X : Dirichlet characters with prime moduli.

o For ‘mn X 7" with Il € A{(Gp) unramified at oo

2

e sy € C such that Resp > 1 — SCIRE

Aim (Motivation)| : To obtain a bound toward the Selberg con-

jecture of unramified archimedean parameters of cusp forms on

GL(n) (by proving the nonvanishing on Res > 1 — —2— of the

n*+1
convolution L-function without gamma factor.)

(38)



THEOREM 1 (Luo-Rudnick-Sarnak (1995))
o ['=Q.

o T = ®ymy € Aj(Gr) such that 7o is unramified.

e sy € C such that Resg > 1 — SCNRE

There exists infinitely many y € X(q) (with prime ¢ > 0) such that

L%(sg, (m @ x) x 1) # 0.

(39)



THEOREM 2 (Luo-Rudnick-Sarnak (1995))
Suppose Resy e (0,1) and € > 0. Then as ) — oo,

> Y L¥sp(mox)xa)=5 > g
q is prime yeX(q)—{1} g is prime
Q<q<20) Q<q<2Q)

2
_"_ OSO E(Ql—l—n 2+1(1—Re SQ)‘FG).

Remark : (1) Since } _ is prime ¢ ~ %QQ/log @), the O-term has the
Q<q<2Q)

smaller order than the first term only when Resy > 1 — In

n2+1"

this region of sj;, the asymptotic formula shows the existence of

x such that the twist L>°(s,I1 ® y x IIV) is non zero. Hence the

(40)



gamma factor L(s,Il,c x I1Y) (independent of ) is holomorphic

on the region Res > 1 — 2.

n?+1
(2) The result is extended to arbitrary number fields by the same

authors ([17]). For that, the use of special moduli constructed by
Rohrlich ([31]) is crucial.

(41)



Main ingredients| :

e An approximate functional equation for L°° (JPSS theory).

e Deligne’s bound of the hyper-Kloosterman sum .

THEOREM 3 (Luo-Rudnick-Sarnak (1995))
Let /' =Q and 7 ¢ Aj(G)) such that 7TOO 7é {0}.

Then 7 = ]1,...,1<| ‘R? SO | ‘]R) with
1 1

Resi| <= — 1<y <n).

Resjl <3 (I<j<n

(‘") From THEOREM 1, L(s, 7o x TY,) = [T ITe Tr(s + s+ s)

2
n2+1"

has to be holomorphic on Res > 1 —

(42)



5.5 Luo ([15])

This refines the result of Barthel-Ramakrishnan by a different

method. (Use an averaging similar to that of [16]).

Novelty| :

For n = 3, the non-vanishing at any point on Res =

is obtained for a twist of any L(s, 7).

(43)

1

2



THEOREM 1 (Luo (2005))

o ['=0Q

o c Aj(Gp) with n > 3.

e S C Yy, : a finite set over which 7 is unramified.
o s) € C with Resg ¢ [2 1—5]

Then there exists infinitly many y € X(pr) (with different primes

p,r) unramified over S such that

L(S(),?T@X) = ()

(When n = 3, [2 | — 2] should be understood as .)

n

(44)



THEOREM 2 (Luo (2005))

Let » = 3. Given a large iteger () > 0, set

3 3 11
Q*(Q) = {pr| p € (Q1,2Q7], r € (Q1,2Q7)are primes not in 5},
which is a subset of |(),4Q)]. Let § € C be such that Re( > %
Then

2
Y Y e W®Xy>>l%Q Q= o0)
1€Q5(Q) X€X(0) o8
The same asymptotic formula holds for n > 3 with a slightly dif-

ferent choice of the set of moduli Q°(Q) and for Re§ > 1 — %

(45)



6 Method Il

e This method relies on the work of Waldspurger on the Shimura
correspondence, and works only for quadratic twists of central

L-value of PGL(2).

e The non-vanishing at s) = % of quadratic twist is subtler .

EXAMPLE| ([26]) : f € 59.(SLo(Z)) : Hecke-eigenform.

e /{: imaginary quadratic field.

o m=BCx qlry) (€ Ao(G2/K))
Then L(%,ﬂ' 2 x) =0 for all y € Xy s.t. %= 1.

(46)



6.1 Waldspurger’s results

THEOREM ([41], [38] ¢f. [26, Theorem A.2])

® 7T = ®fU7TfU - Ag(GQ) With wﬂ- — ]_.

Suppose one of the following two conditions is satisfied:

(i) Jv € Xp s.t. my € [13(GH).
(if) (5, m) = 1
Then there exists a quadratic ¥ € X such that
L (%, T X) = ().
Conversely, if L (%,W ®X) # (0 for some y € X, then 7 satisfies

one of the above two conditions.

(47)



THEOREM 2 Waldspurger([39]), Ono-Skinner([25])
Let f € S5,V (M,1). Then,

e J0(f) € {£1},

e 1N € N s.t. 4M|N,

e Jg=>",b(n)q" € SkJr%(Fl(ZLN)) : non-zero

with the following properties:

(i) For each fundamental discriminant D s.t. i(f)D > 0,

1
k—=
L(7r®xp) Dy 2

Ly
and b(Dy) =0 if (Dy, N) > 1, where Dy = |D| if D is odd
and Dy = |D|/4 if D is even, Q¢ is a “period” of f and ¢p € Q.

(48)

b(Dy)” = €p if (Dy, N) = 1




(ii) There exists a number field K such that b(Djy) € Oy for all

fundamental discriminant D with 6(f)D > 0.

(49)



6.2 Ono-Skinner ([25])

o ['=0Q
e X: a set of Kroneker characters xyp of Q(/D).

o =ms with f € 55" (M,1)

DO —

.SO:

Goldfeld conjectured that for f € S;;"™ (M), a positive proportion
of |D| < X have the non-vanishing L(%, Tr®xp) # 0. They improve
the estimate > X' ~¢ for such |D| < X by Perelli-Pomykala(1997)
and obtain > X/log X.

(50)



THEOREM 1 (Ono-Skinner(1998)

e S={pi,...,pr} : prime numbers.

® c = (€p)pcs € {£1}° : signatures over S.

o f &S5 V(M,1).

o X(e,8) = {xp|D : sar.-free, (D, M) =1, xp(p) = e (p € 5)}.

Then, as X — oo,

< 1 .
#{xp € X(e,9)|0<|D| <X, L (z’ﬂf@)w) FUr>x

(51)



“Fundamental Lemma” (Ono-Skinner(1998)
e gt =) b*(n)¢" € Sk+%(N*) s.t.

(i) b*(m) # 0 for some sqr.-free m > 1 coprime to 4N,

(ii) 0" (n) € O for some number field K/Q.

e ) c{x1}.

e v € ). : dividing 2.

o 50 = {ordy(b*(m))|b*(m) as in (i) }.

® By, :={dm|m as in (i) with sy = ord,(b*(m))}.

e P(r)={D]|product of r distinct primes}.

(52)



If Bs, N P(r)# <, then
X

log log X )1
ng(ogog )

#{Bs; N P(r)| Im| < X} >

(53)



Main Ingredients| :

e To show their ‘Fundamental Lemma” , they use the
attached to a modular form (by Shimura,
Deligne and Serre). They use the
to seek large number of primes with some congruence among

Fourier coefficients ; the bound > X/log X comes from this.

e Invoke ([6]) to see b(|Dq|) # 0

for at least one xp, € X (¢, 5).

e Use a quadratic twist of g to obtain ¢* with level coprime to

D1 and with Fourier coefficients supported on m > 1 such that

(54)



Xom(P) = € (Vp € S). (The Fundamental Lemma should be
applied to this ¢*).

(55)



7/ Method Il

This method is based on another work of Waldspurger related to

the twisted central L-value

L (%, BCy/p(m) ® x) Cme Ag(Gy/F).

(56)



Waldspurger ([40, Théoréeme 2]

e B/F : a quaternion algebra.
o m € Ay(G9) s.t. 3 Jacquet-Langlands transfer JLg(7) to B*(A).
e K — B : a quadratic extension of /' embeded into B

e x : a Hecke character of A} s.t. x|A7 = ws.
Then

beal)i= [ w20 (30 € Lg(n)
ApKX\A%
if and only if
(i) dim¢ Hom g <07’), Indf;? (Xv)) # 0 (Vv € Xp),

(i) L (3. BCxe p(m) @ x) #0
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L-value formulal :

(Under a correct condition of local e-factors and and local invari-
ants of B), the Waldspurger’s formula and its refinements ([7],

[42], [43] for CM case, [27] for real quadratic field K /Q) take the

form

2
L (%7 BCK/F<7T) X X) =C ”‘LZJHZ |€K7X(¢f)

with a positive constants C, where (f,1¢) € 7 X JLg(7) is a certain

| 2

pair of test vectors.
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7.1 Vatsal ([35])

e \ = Q(v/—D) : imaginary quadratic field of discriminant —D
e X : anti-cyclotomic char’s of p-power conductor ((p,2D) = 1).

o = BCK/@(WQ) , where g € S5°V(N) with (p, N) = 1.

osozl.

(N}

Aim (Motivation)| : (non CM case for) Mazur’s conjecture (on

the finite generation of the anti-cyclotomic part of E(K) for an
elliptic curve E/Q with K varying along a tower of ray class fields

of p-power conductor over an imaginary quadratic field. )
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Theorem 1 (Vatsal([35])

e N : an integer.

e N : square free prime to N1, product of odd number of primes
inert in K.

ep:aprimes.t. (p2DNTN™) =1.

e X7 (p™) : the set of all those anti-cyclotomic finite order char-
acters of K with p-power conductor.

e g€ SYV(NTNT) : Hecke-eigen form.

Suppose (i) p is ordinary for g or (ii) p does not divide hy = #Cly.
Then L (%, BCK/Q(Q) ® X) # (0  except for finitely many y € X7 (p™°).
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For simplicity, we suppose hy = 1 (thus D is a prime) here to
simplify the statement of the next theorem.

Theorem 2 (Vatsal([35])
For v € X, let Y = xv+xuw be the decomposition to the tame part

x+ (of order prime to p) and the wide part y,, (of p-power order).
Set X7 (p")[x¢] be the set of x € X7 (p*°) of conductor p" with the

fixed tame part \+. Then
1 Z L (%7 BCF/@(Q) & X)

n—1 ()
P xexmi ’
where ), is a normalized Jacquet-Langlands companion on Cl(B)

— (1 + Xt(Frob(Q))Cg]:{)D gl 4

of g.
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Main ingredients| :

e 1B is the definite quaternion over (Q and consider Eichler orders
R C B of level NT. The JL companion 1, of g lives on the
finite set CI(B) = BX\B*/R*.

) ([7]) to express the L-values by the square value

of the function 1), at a x-twisted sum of “Heeger points” P =
(f, R) over CI(B).

o (this is
used to compute the main term coming from the trivial char-

acter of K).
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on unipotent flows on (p-adic) Lie groups
(this is used to show the vanishing of the remainder terms in

the limit. )

of L(%,g x 6,) under Galois twists is used
to extend the non-vanishing to all relevant characters but for

finitely many exception (an idea introduced by Rohrlich [30]).
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7.2 Michel-Venkatesh ([20])

This is largely an expository article. They explain several ways to
obtain a quantitative non-vanishing result for the “non-abelian”
twists

L(%?f X Oy), X € Cly
of L(s, f) by the theta series 0, induced from a class group charac-
ter y of an imaginary quadratic field Q(v/—D) as D grows, where

0x(2) = 3 (0)2aco  X(@) ¥ € S1(Ty(D), xp).
(Strictly speaking, this is out of the framework of this talk. )
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Theorem (Michel-Venkatesh (2005)

o fcS)W(q,1) with prime level g.
e \ =Q(+v/—D) : an imaginary quad. field of disc. —D. s.t. ¢ is
inert in K.

Then
1
> L (% f® HX) > D27 D= cc.

/\

x€Cl(D)
For any 0 < § < 1/2700,

#0 € Clg L (3, % 0y) #0} 355 D', (D = o0),
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Skech of the proof| :

e 3: the definite quoternion ramified at ooq.

e From

> c(hree) =ML 5

—_—

x€CI(D) oeCl(D)
where ¢, : CI(B) — C is an appropriate JL companion of f such

that [[¢ | = 1.

e Use the fact (lwaniec) that the points {z,|c € CI(D)} become

on Cl(B) to conclude
e Y Is(zo)” = (L o(W)][es]?, D — oo
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e Use hr > DY/2=¢ to obtain

the lower bound from the asymptotic formula:

hilfII*  Dl-e

L(l, ®6)~ R > = =Dl
Z\ 3/ ® 0y WD Dl

x€eCl(D)

e Invoke the L(1/2, f x 0y) < D279 for any
0 <0< 1/1100 (P. Michel).
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8 Method IV

Based on the study of the double Dirichlet series
Z L(w, T ® x4)
N(d)®
(x4 : quadratic Dirichlet character assocoated to F'(\/m)/F)

8.1 Friedberg and Hoffstein ([6])

e [ : arbitrary
e X : A set of quadratic characters

e n=2, ™€ Ay(Ga) (not nec. unitary)

.SO:%

(68)



THEOREM (Friedberg and Hoffstein ([6])))

e 5 : a finite set of places

o £ € X : a fixed quadratic character

o U(S;¢&) ={x € X|quadratic, & =y, (Yv € 5) }

o T € Ay(G2) (not nec. unitary)

If (i) 7 is not selfdual or (ii) 7 is self-dual, and suppose e(%, TRY) =

1 for some x € VU (S5;&), then there exists infinitely many xy € V(S5;¢)
such that

L(%,?T ® x) # 0.
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8.2 Other works

e Bump, D, Friedberg, S., Hoffstein, J., Nonvanishing theorems for
L-functions of modular forms and their derivatives, Invent. Math.
102 (1990), 543-618.

e Chinta, G,. Friedberg, S., Hoffstein, J., Asymptotics for sums
of twisted L-functions and applications, In Automorphic represen-
tations, L-functions and Applications: progress and perspective,
75-94, Ohaio State Univ. Math. Res. Inst. Publ., 11, de Gruyter,
Berlin, 2005.

e Bump, D, Friedberg, S., Hoffstein, J., Sums of twisted GL(3)

(70)



automorphic L-functions, Contributions to Automorphic forms ,
Geometry and Number Theory, Chapter 7, The Johns Hopkins

University Press, Baltimore and London, 2004.
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