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1 The Standard L-functions of GL(n)

• F : an algebraic number field.

• ΣF = Σfin ∪ Σ∞: the set of places of F .

•OF : the ring of integers of F .

•AF : the ring of adeles of F .

• A0(Gn) : the set of irreducible cuspidal automorphic represen-

tations of GLn(AF ). (Gn := GL(n))

• Au
0(Gn) : the set of π ∈ A0(Gn) whose central character ωπ is

unitary.
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1.1 The Vogan-Tadic classification

([33], [34], [37], a convenient reference is [14])

Fix v ∈ ΣF . Set

Πu(Gn(Fv)) := {irreducible smooth unitary rep’s of Gn(Fv)}/ ∼,

Πud(Gn(Fv)) := {δ ∈ Πu(Gn(Fv))| δ is square integrable },

Πusc(Gn(Fv)) := {σ ∈ Πu(Gn(Fv))|σ is supercuspidal }(when v <∞)

• The unramified twist of π ∈ Π(Gn(Fv)) by s ∈ C is defined as

π(s) : g 7→ | det g|sπ(g).

(3)



• (Discrete series) Πud(Gn(Fv)) = {Q(σ, d)|σ ∈ Πusc(Gn/d(Fv)), d|n },

where m = n/d,

Im,...,m

(
σ
(
1−d
2

)
, σ
(
3−d
2

)
, . . . , σ

(
d−1
2

))
→

unique quotient
Q(σ, d).

• (Speh module) For δ ∈ Πud(Gm(Fv)) and d ⩾ 2, the module sp(δ, d)

is an element of Πu(Gmd(Fv)) defined as

Im,...,m

(
δ(d−1

2 ), δ(d−3
2 ), . . . , δ(1−d2 )

)
→

the Langlands quotient
sp(δ, d).

• (Complementary series) For δ ∈ Πud(Gm(Fv)), d ∈ N and α ∈

(0, 1/2), set

u(δ, d, α) := Imd,md

(
sp(δ, d)(α), sp(δ, d)(−α)

)
,

where we set sp(δ, 1) = δ.

(4)



• B(n) : all possible rep’s of Gn(Fv) among all those δ, sp(δ, d) and

u(δ, d, α) constructed above.

THEOREM (Vogan-Tadic̀)

The full unitary dual of Gn(Fv) is given as

Πu(Gn(Fv)) = {In1,...,nr(σ1, . . . , σr)|σj ∈ B(nj) (1 ⩽ j ⩽ r) }/ ∼ .

The multiset {σ1, . . . , σr} determines the class of π uniquely.

——————————————————–

• generic ⇔ Blue blocks ̸∈ {σj}.
• tempered ⇔ Blue blocks & Green blocks ̸∈ {σj}.
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1.2 The standard L-functions

• π ∼= ⊗v∈ΣFπv ∈ A0(GLn), the standard L-function is defined as

L(s, π) :=
∏
v∈ΣF

L(s, πv) (abs. conv. on Re s≫ 0).

The local factor L(s, πv) is described as follows:

(i) If I(δ1, . . . , δr) → πv (Langlands quoteint) with δj ∈ Πud(Gnj(Fv)),

L(s, πv) =
r∏
j=1

L(s, δj).

(6)



(ii) If v ∈ Σfin and δ ∼= Q(σ, d) with σ ∈ Πsc(Gm(Fv)) (n = dm), then

L(s, δ) = L
(
s + d−1

2 , σ
)
.

If v ∈ Σ∞ and δ ∈ Πud(Gm(Fv)) (m = 1, 2),

L(s, δ) =

ΓR (s + ν + ϵ) , (δ ∼= χν,ϵ (ν ∈ C, ϵ ∈ {0, 1}),

ΓC
(
s + l

2 + ν
)
, (δ ∼= Dν,l (ν ∈ C, l ∈ N).

(iii) Let v ∈ Σfin. For σ ∈ Πsc(Gn(Fv)),

L(s, σ) =

(1− q−sv )−1 (n = 1, σ = 1),

1 (otherwise).

(7)



Basic properties of the standard L

Let π ∈ Au
0(Gn) with n > 1. Then

(1) L(s, π) =
∏
v L(s, πv) conv. abs. on Re s > 1.

(2) L(s, π) (Re s > 1) has a holomorphic continuation to C.

(3) L(s, π) and L(1− s, π∨) satisfies

L(s, π) = W (π)(Dn
F/QN(qπ))

1/2−sL(1− s, π∨), (1)

where qπ is the conductor of π and W (π) = ϵ(12, π) ∈ C1 is the

root number.

(3) The holomorphic function L(s, π) is bounded on any vertical

strip {σ ∈ C| a < Re s < b }.

(8)



THEOREM (Jacquet-Shalika [9])

Let π ∈ Au
0(Gn). Then L(s, π) ̸= 0 on the edge of the critical strip

Re s = 0, 1.

THEOREM (Shalika)

Any π ∈ A0(Gn) is globally generic.

If π ∼= ⊗vπv, then, for each v ∈ ΣF , πv is a generic representation

of Gn(Fv), i.e.,

dimCHomGv(Fv)(πv, C
∞Ind

Gn(Fv)
Un(Fv)

(θ)) = 1,

where Un(Fv) is the upper-triangular maximal unipotent subgroup

and θ is the character ψv(
∑n−1
j=1 ujj+1) of Uv(Fv).

(9)



A consequence of genericity and the Vogan-Tadic classification

Suppose π ∈ Au
0(Gn). Then ∃S ⊂ ΣF (finite set) s.t.

π
GLn(Ov)
v ̸= {0} (∀v ∈ Σfin − S).

• For v ∈ Σfin − S,

πv ∼= I1,...,1

(
{χj}aj=1, {χj(νi), χj(−νi)}

n
i=a+1)

)
with χj ∈ F̂×

v (unramified), and νj ∈ (0, 1/2).

• For v ∈ S,

πv ∼= In1,...,nr

(
{δj}aj=1, {δj(νj), δj(−νj)}

r
i=a+1

)
with δj ∈ Πud(Gnj(Fv)) and νj ∈ (0, 12).

Remark : The generalized Ramanujan conj. for π ⇔ {νj} is empty (∀v ∈ ΣF ).
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Holomorphy of local L-factors

Let π ∼= ⊗vπ ∈ Au
0(Gn).

(i) For v ∈ ΣF , there exists θv > 0 such that L(s, πv) has neither

zeros nor poles on Re > 1/2− θv.

(ii) If πv is tempered, then L(s, πv) has neither zeros nor poles on

Re s > 0.

(11)



A remark on trivial zeros

For a finite set S ⊂ ΣF ,

LS(s, π) :=
∏
v ̸∈S

L(s, πv) (Re s > 1).

Let s0 ∈ C with 1
2 ⩽ Re s0 < 1. Then

L(s0, π) ̸= 0 ⇐⇒ LS(s0, π) ̸= 0

If πS = ⊗v∈Sπv is tempered, the same is true for 0 < Re s0 < 1.

——————————————————————–

This follows from the local holomorphy of L-factors. Due to the lack of the

gamma factors, L∞(s, π) has more zeros than L(s, π); the extra zeros are called

the trivial zeros of L∞(s, π) (cf. s = −2,−4, . . . for ζ(s). )

(12)



2 The problem

• X : the set of continuous characters χ : A×
F/F

×F×
∞ → C1.

• qχ : the conductor of χ ∈ X.

• For q ⊂ OF , X(q) := {χ ∈ X| qχ = q }.

Example : When F = Q and q ∈ N, X(q) is the primitive even

Dirichelet characters modulo q.

(13)



PROBLEM (nonvanishing of twisted L-values)

• A ⊂ Au
0(Gn) : a class of cuspidal representations

• X ⊂ X : a (large) subset.

Given a π ∈ A and a point s0 ∈ C,

(1) does there exist χ ∈ X such that L(s0, π ⊗ χ) ̸= 0 ?

(non-vansihing)

(2) For π ∈ A, how the cardinarity

#{χ ∈ X ∩ X(q)|L(s0, π ⊗ χ) ̸= 0}

grows as N(q) → ∞ ? (quantitative non-vanishing)

(14)



Remarks :

• This is non-trivial only when 0 < Re s0 < 1.

• This is a problem on the classes A and X (not on individual χ).

(The nature of A and X is of great relevance.)

• GRH predicts L(s0, π ⊗ χ) ̸= 0 unless Re s0 =
1
2.

• If π ∈ Au
0(G2n) is regular algebraic, s0 = 1

2 is the only possi-

ble critical point for which the non-vanishing of the L-value has

to be proved. In Namikawa’s talk, for the non-triviality of Ash-

Ginzburg’s p-adic L-function, the non-vanshing L(12, π⊗ χ) ̸= 0 for

some χ ∈ X(p∞) is needed. (For GL(2), this is OK by Rohrlich’s

result.)

(15)



3 Known results

•GL(1) : For Dirichlet characters: [13], [1] etc.,

For canonical Hecke characters of CM-fields : [28], [?], [21],

[29], [19] etc.

•GL(2) : [30], [31], [3], [6], [23], [24], [8], [25], [20] etc. Most

of these works deal with nonvanishing at s0 = 1
2. (We remark

that [31] and [6] consider the problem at an arbitrary point s0).

(16)



•GL(n) with n > 2: [2], [15], [16], [17], [5], [4].

The non-vanishing result for the central point s0 =
1
2 seems very

few. As far as the speaker can find, there are at least two such

results:

– For π ∈ A0(G3) over F = Q by Luo ([15]).

– For Ad(π) (π ∈ A0(G2)) over F = Q by Bump-Friedberg-Hoffstein

([4]).

There seems no non-vansihing results along χ ∈ X(p∞).

(17)



METHODS :

• The approximate functional equation + a bound of (hyper-)Kloosterman

sums (due to Weil and Deligne). [30], [31], [23], [24], [2], [15], [16], [17].

• (For quadratic twists)

Waldspurger’s result on Shimura correspondence + An estimation of Fourier

coefficient of half-integral weight forms. ([25])

• (For anti-cyclotomic twists)

Waldspurger type formula identifying the central L-value (degree 4 Euler

product) with some toric periods (Waldspurger, S. W. Zhang, Gross) +

Equidistribution of Heeger divisors on Shimura varieties. ([35], [36], [20]

•Metaplectic Eisenstein series and the related multiple Dirichlet series. [3],

[6], [4], [5].

(18)



4 Method I

The L-value is captured by the Hecke’s zeta integral.

EXAMPLE : f =
∑
n a(n)q

n ∈ S2k(SL2(Z)).

ΓC(s)L(s, f )

=

∫ ∞

0
f (iy)ys

dy

y

=

∫ u

0
f (iy)ys

dy

y
+

∫ ∞

u
f (iy)ys

dy

y

= (−1)k
∫ ∞

u−1
f (iy)y2k−s

dy

y
+

∫ ∞

u
f (iy)ys

dy

y

= (−1)k
∫ ∞

u−1

∞∑
n=1

a(n)e−2πy y2k−s
dy

y
+

∫ ∞

u

∞∑
n=1

a(n)e−2πy ys
dy

y
.
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4.1 Rohrlich([30])

• F = Q

•X : Dirichlet characters with bounded ramification locus.

• n = 2, π = πf ∈ Au
0(G2) with f ∈ Snew2 (Γ0(N), ψ)

• s0 = 1
2

(20)



THEOREM 1 (Rohrlich (1984))

• f ∈ Snew2 (Γ0(N), ψ).

• P : a finite nonempty set of prime numbers not dividing N .

Then there exists q0 ∈ N such that

L
(
1
2, πf ⊗ χ

)
̸= 0 for all χ ∈ X(q) with q =

∏
p∈P

pep > q0.

(21)



THEOREM 2 (Rohrlich (1984))

• f ∈ Snew2 (Γ0(N), ψ).

• P : a finite nonempty set of prime numbers not dividing N .

• F = Q(af (n)| (n,N) = 1) the Hecke field of f .

• F (χ) = F (χ(n)|n ∈ N).

Then,

1

#[F (χ) : F ]

∑
σ∈HomF−alg(F (χ),C)

L
(
1
2, f ⊗ χσ

)
= 1 + o(1), (q → ∞)

for χ ∈ X(q) with q =
∏
p∈P p

ep > q0

(22)



Main ingredients :

•A truncated expression of Hecke’s zeta integral.

•The two bounds concerning χav(n) = [F (χ) : F ]−1∑
σ χ

σ(n) :

inf{n ⩾ 2|χav(n) ̸= 0} ≫ qγ (with some γ > 0),

#{n ∈ [1, q]|χav(n) ̸= 0} = O(1)

uniform in χ and q = qχ.

•Weil’s bound on the Kloosterman sum.

• Shimura’s algebraicity is used to ensure L
(
1
2, f ⊗ χ

)
̸= 0 if and

only if L
(
1
2, f

σ ⊗ χσ
)
̸= 0.

(23)



Remark: The asymptotic formula implies the non-vanishing of the

L-values for some character-twist of sufficiently large conductor.

Shimura’s result is used to claim the non-vanishing for all twists

with the same large conductors.

The following application is given:

THEOREM 3 (Rohrlich (1984))

Let E/Q be an elliptic curve with CM by the integer ring of an

imaginary quadratic field. Let P be a finite set of primes over

which E has good reduction. Let L/Q be the maximal abelian

extension unramified outside P ∪ {∞}. Then E(L) is finitely gen-

erated.

(24)



Novelty :

•Generic non-vanishing along χ with p-power conductors.

•Theorem 1 automoatically implies the simultaneous non-vanishing

result :

• fi ∈ Snew2 (Ni, ψi) (i = 1, . . . , r).

• P : a finite set of primes not dividing N1 . . . Nr.

Then there exists q0 such that

L
(
1
2, fi ⊗ χ

)
̸= 0 for all 1 ⩽ i ⩽ r

and for all χ ∈ X(q) with q =
∏
p∈P p

ep > q0.

(25)



5 Method I’

The L-value is captured by the approximate functional equation.

5.1 Approximate functional equation

Let π ∈ Au
0(Gn). Define {aπ(n)| integral ideals n ⊂ OF } as

L(s, π) = L(s, π∞)
∏
v∈Σfin

L(s, πv) = L(s, π∞)
∑
n

aπ(n)

N(n)s
, Re s > 1,

where L(s, π∞) is the gamma factor. Set A(π) = Dn
F/QN(qπ). Then

L(s, π) = W (π)A(π)
1
2−sL(1− s, π∨).

(26)



Let σ ∈ (12, 1) and suppose π∞ is tempered for simplicity. For y > 0,

set

J(y) = 1
2πi

∫
(2)
L(s + σ, π∞) y−s

ds

s
,

J̃(y) = 1
2πi

∫
(2)
L(1 + s− σ, π∨∞) y−s

ds

s
.

For any u > 0, the value L(σ, π) is expressed as the sum of the

absolutely convergent series

L(σ, π) =
∑
n

aπ(n)

N(n)σ
J(uN(n)) +W (π)A(π)

1
2−σ

∑
n

aπ(n)

N(n)1−σ
J̃

(
N(n)

Aπu

)
,

over the set of integral ideals n ⊂ OF .

(27)



Sketch of the proof : By the contour shift and the functional equa-

tion,

1

2πi

∫
(2)
L(s + σ, π)u−s

ds

s

=
1

2πi

∫
(−2)

L(s + σ, π)u−s
ds

s
+ Ress=0

(
L(s + σ)u−s

s

)
=

1

2πi

∫
(−2)

A1/2−s−σL(1− s− σ, π∨)u−s
ds

s
+ L(σ, π).

Substitute the Dirichlet series expansion and exchange the order

of integral and summation.

(28)



5.2 Rohrlich ([31])

• F : arbitrary.

•X : certain set of χ with square free conductor.

• n = 1, 2, π ∈ Au
0(G2) no restriction of ωπ.

• s0 ∈ C : arbitrary.

Application : The condition kv ⩾ 3 for all v|∞ is removed from

the hypothesis of Theorem 4.3 of Shimura’s paper (’78 Duke, “

The special values of ...”)

(29)



THEOREM 1 (Rohrlich1989)

• π ∈ Au
0(Gn) (n = 1 or n = 2).

• S ⊂ Σfin : a finte set.

• s0 ∈ C.

There exists infinitely many χ ∈ X unramified over S and square

free conductors such that

L(s0, π ⊗ χ) ̸= 0.

(30)



Asymptotic formula :

• P (F, S, π) := {p : prime numbers dividingDF/QN(qπ) N
∏
v∈S(pv) }.

• ϵ > 0 : small number.

• QS,π,ϵ : the set of all ideals q ⊂ OF s.t.

(i)N(q) is a product of distinct prime numbers outside P (F, S, π).

(ii)#X(q) ≫ϵ N(q)
1−ϵ.

Remark : The technical core of the paper is to show that QS,π,ϵ is

an infinite set, which needs an extention of Bombieri-Vinogradov

theorem by Murty-Murty.

(31)



• For q ∈ QS,π,ϵ and a prime r ̸∈ P (F, S, π) not dividing q = N(q),

set

X(q, r) := {ψ (ξ ◦ NF/Q)
j|ψ ∈ X(q), 0 ⩽ j ⩽ r−3

2 },

where ξ is a primitive Dirichlet character of conductor r and of

order r−1
2 .

THEOREM 2 (Rohrlich1989)

Let σ0 ∈ R such that 1
2 ⩽ σ0 < 1. Then

1

#X(q, r)

∑
χ∈X(q,r)

L(σ0, π ⊗ χ) = L∞(σ0, π) + o(1) (N(q) → ∞)

for q ∈ QS,π,ϵ and r as above with N(q)ϵρ < r < N(q)2ϵρ if ϵ > 0 is

small enough and ρ > 0 is chosen appropriately.

(32)



Main ingredients

•An extention of Bombieri-Vinogradov theorem by Murty-Murty

(this is needed to ensure the set Qπ,S,ϵ is infinite.)

•The approximate functional equation for L(s, π ⊗ χ).

•The Rankin-Selberg bound for the average of Fourier coeffi-

cients.

•Weil’s bound of Kloostermann sum (to show the vanishing of

the remainder term in the limit.)

(33)



5.3 Barthel and Ramakrishnan ([2])

Methodorogically, this is a direct decendent of Rorlich (1989).

• F : arbitrary.

•X: the same as in Rohrlich (1989).

• n ⩾ 3, π ∈ Au
0(Gn).

• s0 ∈ C with Re s0 ̸∈ [1n, 1−
1
n]

or Re s0 ̸∈ [ 2
n+1, 1−

2
n+2] if π satisfies the Ramanujan conj.

Motivation : To persue a generalization of the Rohrlich’s method

to the standard L-function of GL(n) (and hopefully to other au-

tomorphic L-functions like the degree 5 L-functions of GSp(4)).

(34)



THEOREM 1 (Barthel-Ramakrishnan (1994)

• π ∈ Au
0(Gn) with n ⩾ 3.

• S ⊂ Σfin : a finte set.

• s0 ∈ C s.t. Re s0 ̸∈ [1n, 1−
1
n].

Then there exists infinitly many χ ∈ X unramified over S such

that

L(s0, π ⊗ χ) ̸= 0.

If π satisfies the Ramanujan conjecture, then the same conclusion

holds for Re s0 ̸∈ [ 2
n+1, 1−

2
n+1].

————————————————————

Remark : The theorem has no conclusion for s0 =
1
2.

(35)



THEOREM 2 (Barthel-Ramakrishnan (1994)

Suppose Re s0 ̸∈ [1n, 1−
1
n] or π is tempered and Re s0 ̸∈ [ 2

n+1, 1−
2

n+1].

Then

1

#X(q, r)

∑
χ∈X(q,r)

L(σ0, π ⊗ χ) = L∞(σ0, π) + o(1) (N(q) → ∞)

for q ∈ QS,π,ϵ and r as above with N(q)ϵρ < r < N(q)2ϵρ if ϵ > 0 is

small enough and ρ > 0 is chosen appropriately (to be independent

of q).

(36)



Main ingredients :

•The method is largely an adaptation of the Rohrlich’s work [31].

(The use of the special moduli QS,π,ϵ is crucial.)

•The approximate functional equation for L(s, π ⊗ χ).

•A bound for the average of Fourier coefficients∑
N(n)<X |aπ(n)|2 = O(N(n)1/2−δ) (JPSS theory).

•Deligne’s bound of the hyper-Kloosterman sum of prime moduli:

Kn(r, q) :=
∑

x1...xn≡r (mod q)

e
(
x1+···+xn

q

)
⩽ nq

n−1
2

this is used to show the vanishing of the remainder term in the

limit.
(37)



5.4 Luo-Rudnick-Sarnak ([16])

• F = Q.

•X : Dirichlet characters with prime moduli.

• For ‘π ⊠ π∨’ with Π ∈ Au
0(Gn) unramified at ∞

• s0 ∈ C such that Re s0 > 1− 2
n2+1

.

Aim (Motivation) : To obtain a bound toward the Selberg con-

jecture of unramified archimedean parameters of cusp forms on

GL(n) (by proving the nonvanishing on Re s > 1 − 2
n2+1

of the

convolution L-function without gamma factor.)

(38)



THEOREM 1 (Luo-Rudnick-Sarnak (1995))

• F = Q.

• π ∼= ⊗vπv ∈ Au
0(Gn) such that π∞ is unramified.

• s0 ∈ C such that Re s0 > 1− 2
n2+1

.

There exists infinitely many χ ∈ X(q) (with prime q ≫ 0) such that

L∞(s0, (π ⊗ χ)× π∨) ̸= 0.

(39)



THEOREM 2 (Luo-Rudnick-Sarnak (1995))

Suppose Re s0 ∈ (0, 1) and ϵ > 0. Then as Q→ ∞,∑
q is prime
Q<q⩽2Q

∑
χ∈X(q)−{1}

L∞(s0, (π ⊗ χ)× π∨) = 1
2

∑
q is prime
Q<q⩽2Q

q

+Os0,ϵ(Q
1+n

2+1
2 (1−Re s0)+ϵ).

————————————————————

Remark : (1) Since
∑
q is prime
Q<q⩽2Q

q ∼ 3
2Q

2/ logQ, the O-term has the

smaller order than the first term only when Re s0 > 1 − 2
n2+1

. In

this region of s0, the asymptotic formula shows the existence of

χ such that the twist L∞(s,Π ⊗ χ × Π∨) is non zero. Hence the

(40)



gamma factor L(s,Π∞ × Π∨
∞) (independent of χ) is holomorphic

on the region Re s > 1− 2
n2+1

.

(2) The result is extended to arbitrary number fields by the same

authors ([17]). For that, the use of special moduli constructed by

Rohrlich ([31]) is crucial.

(41)



Main ingredients :

•An approximate functional equation for L∞ (JPSS theory).

•Deligne’s bound of the hyper-Kloosterman sum .

THEOREM 3 (Luo-Rudnick-Sarnak (1995))

Let F = Q and π ∈ Au
0(Gn) such that π

O(n)
∞ ̸= {0}.

Then π∞ ∼= I1,...,1(| |
s1
R , . . . , | |

sn
R ) with

|Re sj| ⩽
1

2
− 1

n2 + 1
(1 ⩽ j ⩽ n).

————————————————————

(∵) From THEOREM 1, L(s, π∞×π∨∞) =
∏n
j=1
∏n
i=1 ΓR(s+ sj + si)

has to be holomorphic on Re s > 1− 2
n2+1

.

(42)



5.5 Luo ([15])

This refines the result of Barthel-Ramakrishnan by a different

method. (Use an averaging similar to that of [16]).

Novelty : For n = 3, the non-vanishing at any point on Re s = 1
2

is obtained for a twist of any L(s, π).

(43)



THEOREM 1 (Luo (2005))

• F = Q

• π ∈ Au
0(Gn) with n ⩾ 3.

• S ⊂ Σfin : a finite set over which π is unramified.

• s0 ∈ C with Re s0 ̸∈ [2n, 1−
2
n].

Then there exists infinitly many χ ∈ X(pr) (with different primes

p, r) unramified over S such that

L(s0, π ⊗ χ) ̸= 0

(When n = 3, [2n, 1−
2
n] should be understood as ∅.)

(44)



THEOREM 2 (Luo (2005))

Let n = 3. Given a large iteger Q > 0, set

QS(Q) = {pr| p ∈ (Q
3
4, 2Q

3
4], r ∈ (Q

1
4, 2Q

1
4] are primes not in S },

which is a subset of [Q, 4Q]. Let β ∈ C be such that Re β ⩾ 1
2.

Then

|
∑

q∈QS(Q)

∑
χ∈X(q)

L(β, π ⊗ χ)| ≫ Q2

log2Q
(Q→ ∞).

The same asymptotic formula holds for n > 3 with a slightly dif-

ferent choice of the set of moduli QS(Q) and for Re β ⩾ 1− 2
n.

(45)



6 Method III

• This method relies on the work of Waldspurger on the Shimura

correspondence, and works only for quadratic twists of central

L-value of PGL(2).

• The non-vanishing at s0 =
1
2 of quadratic twist is subtler .

EXAMPLE ([26]) : f ∈ S2k(SL2(Z)) : Hecke-eigenform.

• K: imaginary quadratic field.

• π = BCK/Q(πf ) (∈ A0(G2/K))

Then L(12, π ⊗ χ) = 0 for all χ ∈ XF s.t. χ2 = 1.

(46)



6.1 Waldspurger’s results

THEOREM ([41], [38] cf. [26, Theorem A.2])

• π ∼= ⊗vπv ∈ Au
0(G2) with ωπ = 1.

Suppose one of the following two conditions is satisfied:

(i) ∃v ∈ ΣF s.t. πv ∈ Πud(G2).

(ii) ϵ(12, π) = 1

Then there exists a quadratic χ ∈ X such that

L
(
1
2, π ⊗ χ

)
̸= 0.

Conversely, if L
(
1
2, π ⊗ χ

)
̸= 0 for some χ ∈ X, then π satisfies

one of the above two conditions.
(47)



THEOREM 2 Waldspurger([39]), Ono-Skinner([25])

Let f ∈ Snew2k (M, 1). Then,

• ∃δ(f ) ∈ {±1},

• ∃N ∈ N s.t. 4M |N ,

• ∃ g =
∑∞
n=1 b(n)q

n ∈ S
k+1

2
(Γ1(4N)) : non-zero

with the following properties:

(i) For each fundamental discriminant D s.t. δ(f )D > 0,

b(D0)
2 = ϵD

L
(
1
2, πf ⊗ χD

)
D
k−1

2
0

Ωf
if (D0, N) = 1

and b(D0) = 0 if (D0, N) > 1, where D0 = |D| if D is odd

and D0 = |D|/4 if D is even, Ωf is a “period” of f and ϵD ∈ Q̄.

(48)



(ii) There exists a number field K such that b(D0) ∈ OK for all

fundamental discriminant D with δ(f )D > 0.

(49)



6.2 Ono-Skinner ([25])

• F = Q

•X: a set of Kroneker characters χD of Q(
√
D).

• π = πf with f ∈ Snew2k (M, 1)

• s0 = 1
2

Goldfeld conjectured that for f ∈ Snew2k (M), a positive proportion

of |D| < X have the non-vanishing L(12, πf⊗χD) ̸= 0. They improve

the estimate ≫ X1−ϵ for such |D| < X by Perelli-Pomykala(1997)

and obtain ≫ X/ logX.

(50)



THEOREM 1 (Ono-Skinner(1998)

• S = {p1, . . . , pr} : prime numbers.

• ϵ = (ϵp)p∈S ∈ {±1}S : signatures over S.

• f ∈ Snew2k (M, 1).

• X(ϵ, S) = {χD|D : sqr.-free, (D,M) = 1, χD(p) = ϵp (p ∈ S)}.

Then, as X → ∞,

#{χD ∈ X(ϵ, S)| 0 < |D| ⩽ X, L
(
1
2, πf ⊗ χD

)
̸= 0 } ≫ X

logX
.

(51)



“Fundamental Lemma” (Ono-Skinner(1998)

• g∗ =
∑
n b

∗(n)qn ∈ S
k+1

2
(N∗) s.t.

(i) b∗(m) ̸= 0 for some sqr.-free m > 1 coprime to 4N ,

(ii) b∗(n) ∈ OK for some number field K/Q.

• δ ∈ {±1}.

• v ∈ ΣK : dividing 2.

• s0 = {ordv(b∗(m))| b∗(m) as in (i) }.

• Bs0 := {δm|m as in (i) with s0 = ordv(b
∗(m))}.

• P (r) = {D|product of r distinct primes}.

(52)



If Bs0 ∩ P (r) ̸= ∅, then

#{Bs0 ∩ P (r)| |m| < X} ≫ X

logX
(log logX)r−1

(53)



Main Ingredients :

•To show their ‘Fundamental Lemma” , they use the ℓ-adic Ga-

lois representation attached to a modular form (by Shimura,

Deligne and Serre). They use the Chebotatev density theorem

to seek large number of primes with some congruence among

Fourier coefficients ; the bound ≫ X/ logX comes from this.

• Invoke a result by Friedberg-Hoffstein ([6]) to see b(|D1|) ̸= 0

for at least one χD1
∈ X(ϵ, S).

•Use a quadratic twist of g to obtain g∗ with level coprime to

D1 and with Fourier coefficients supported on m > 1 such that

(54)



χδm(p) = ϵp (∀p ∈ S). (The Fundamental Lemma should be

applied to this g∗).

(55)



7 Method II

This method is based on another work of Waldspurger related to

the twisted central L-value

L
(
1
2,BCK/F (π)⊗ χ

)
, π ∈ A0(G2/F ).

(56)



Waldspurger ([40, Théorème 2]

• B/F : a quaternion algebra.

• π ∈ A0(G2) s.t. ∃ Jacquet-Langlands transfer JLB(π) to B
×(A).

• K ↪→ B : a quadratic extension of F embeded into B

• χ : a Hecke character of A×
K s.t. χ|A×

F = ωπ.

Then

ℓK,χ(ψ) :=

∫
AFK×\A×

K

ψ(t)χ(t)−1 dt ̸= 0 (∃ψ ∈ JLB(π))

if and only if

(i) dimCHomB×
v

(
σ′v, Ind

B×
v

K×
v
(χv)

)
̸= 0 (∀v ∈ ΣF ),

(ii) L
(
1
2,BCK/F (π)⊗ χ

)
̸= 0

(57)



L-value formula :

(Under a correct condition of local ϵ-factors and and local invari-

ants of B), the Waldspurger’s formula and its refinements ([7],

[42], [43] for CM case, [27] for real quadratic field K/Q) take the

form

L
(
1
2,BCK/F (π)⊗ χ

)
= C

∥f∥2

∥ψf∥2
∣∣ℓK,χ(ψf )∣∣2

with a positive constants C, where (f, ψf ) ∈ π×JLB(π) is a certain

pair of test vectors.

(58)



7.1 Vatsal ([35])

•K = Q(
√
−D) : imaginary quadratic field of discriminant −D

•X : anti-cyclotomic char’s of p-power conductor ((p, 2D) = 1).

• π = BCK/Q(πg) , where g ∈ Snew2 (N) with (p,N) = 1.

• s0 = 1
2.

Aim (Motivation) : (non CM case for) Mazur’s conjecture (on

the finite generation of the anti-cyclotomic part of E(K) for an

elliptic curve E/Q with K varying along a tower of ray class fields

of p-power conductor over an imaginary quadratic field. )

(59)



Theorem 1 (Vatsal([35])

• N+ : an integer.

• N− : square free prime to N+, product of odd number of primes

inert in K.

• p : a prime s.t. (p, 2DN+N−) = 1.

• X−(p∞) : the set of all those anti-cyclotomic finite order char-

acters of K with p-power conductor.

• g ∈ Snew2 (N+N−) : Hecke-eigen form.

Suppose (i) p is ordinary for g or (ii) p does not divide hK = #ClK.

Then L
(
1
2,BCK/Q(g)⊗ χ

)
̸= 0 except for finitely many χ ∈ X−(p∞).

(60)



For simplicity, we suppose hK = 1 (thus D is a prime) here to

simplify the statement of the next theorem.

Theorem 2 (Vatsal([35])

For χ ∈ X, let χ = χtχw be the decomposition to the tame part

χt (of order prime to p) and the wide part χw (of p-power order).

Set X−(pn)[χt] be the set of χ ∈ X−(p∞) of conductor pn with the

fixed tame part χt. Then

1

pn−1

∑
χ∈X−(pn)[χt]

L
(
1
2,BCF/Q(g)⊗ χ

)
Ωg

=

(
1 + χt(Frob(D))

ag(D)

D + 1

)
∥ψg∥2 + o(1) (n→ ∞),

where ψg is a normalized Jacquet-Langlands companion on Cl(B)

of g.

(61)



Main ingredients :

•B is the definite quaternion over Q and consider Eichler orders

R ⊂ B of level N+. The JL companion ψg of g lives on the

finite set Cl(B) = B×\B̂×/R̂×.

•Gross’s formula ([7]) to express the L-values by the square value

of the function ψg at a χ-twisted sum of “Heeger points” P =

(f,R) over Cl(B).

• Equidistribution of Heeger points of p-power conductor (this is

used to compute the main term coming from the trivial char-

acter of K).

(62)



•Ratner’s theorem on unipotent flows on (p-adic) Lie groups

(this is used to show the vanishing of the remainder terms in

the limit. )

• Shimura’s reciprocity of L(12, g × θχ) under Galois twists is used

to extend the non-vanishing to all relevant characters but for

finitely many exception (an idea introduced by Rohrlich [30]).

(63)



7.2 Michel-Venkatesh ([20])

This is largely an expository article. They explain several ways to

obtain a quantitative non-vanishing result for the “non-abelian”

twists

L(12, f × θχ), χ ∈ ĈlK

of L(s, f ) by the theta series θχ induced from a class group charac-

ter χ of an imaginary quadratic field Q(
√
−D) as D grows, where

θχ(z) =
∑

(0) ̸=a⊂OK
χ(a)qN(a) ∈ S1(Γ0(D), χD).

(Strictly speaking, this is out of the framework of this talk. )

(64)



Theorem (Michel-Venkatesh (2005)

• f ∈ Snew2 (q, 1) with prime level q.

• K = Q(
√
−D) : an imaginary quad. field of disc. −D. s.t. q is

inert in K.

Then ∑
χ∈Ĉl(D)

L
(
1
2, f ⊗ θχ

)
≫ϵ,f D

1
2−ϵ, D → ∞.

For any 0 < δ < 1/2700,

#{χ ∈ ĈlK|L
(
1
2, f × θχ

)
̸= 0 } ≫δ,f D

δ, (D → ∞).

(65)



Skech of the proof :

•B: the definite quoternion ramified at ∞q.

• From Gross’s formula∑
χ∈Ĉl(D)

L
(
1
2, f ⊗ θχ

)
=
hK∥f∥2

4
√
D

∑
σ∈Cl(D)

|ψf (xσ)|2

where ψf : Cl(B) → C is an appropriate JL companion of f such

that ∥ψf∥2 = 1.

•Use the fact (Iwaniec) that the points {xσ|σ ∈ Cl(D)} become

equidistributed on Cl(B) to conclude

h−1
K

∑
σ

|ψf (xσ)|2 = (1 + o(1))∥ψf∥2, D → ∞.

(66)



•Use Siegel’s bound of class numbers hK ≫ϵ D
1/2−ϵ to obtain

the lower bound from the asymptotic formula:∑
χ∈Ĉl(D)

L
(
1
2, f ⊗ θχ

)
∼
h2K∥f∥2

4
√
D

≫ϵ
D1−ϵ

D1/2
= D1/2−2ϵ

• Invoke the subconvex bound L(1/2, f × θχ) ≪f D
1/2−δ) for any

0 < δ < 1/1100 (P. Michel).

(67)



8 Method IV

Based on the study of the double Dirichlet series∑ L(w, π ⊗ χd)

N(d)s

(χd : quadratic Dirichlet character assocoated to F (
√
m)/F )

8.1 Friedberg and Hoffstein ([6])

• F : arbitrary

• X : A set of quadratic characters

• n = 2, π ∈ A0(G2) (not nec. unitary)

• s0 = 1
2

(68)



THEOREM (Friedberg and Hoffstein ([6])))

• S : a finite set of places

• ξ ∈ X : a fixed quadratic character

• Ψ(S; ξ) = {χ ∈ X|quadratic, ξv = χv (∀v ∈ S) }

• π ∈ A0(G2) (not nec. unitary)

If (i) π is not selfdual or (ii) π is self-dual, and suppose ϵ(12, π⊗χ) =

1 for some χ ∈ Ψ(S; ξ), then there exists infinitely many χ ∈ Ψ(S; ξ)

such that

L(12, π ⊗ χ) ̸= 0.

(69)



8.2 Other works

• Bump, D, Friedberg, S., Hoffstein, J., Nonvanishing theorems for

L-functions of modular forms and their derivatives, Invent. Math.

102 (1990), 543-618.

• Chinta, G,. Friedberg, S., Hoffstein, J., Asymptotics for sums

of twisted L-functions and applications, In Automorphic represen-

tations, L-functions and Applications: progress and perspective,

75-94, Ohaio State Univ. Math. Res. Inst. Publ., 11, de Gruyter,

Berlin, 2005.

• Bump, D, Friedberg, S., Hoffstein, J., Sums of twisted GL(3)

(70)



automorphic L-functions, Contributions to Automorphic forms ,

Geometry and Number Theory, Chapter 7, The Johns Hopkins

University Press, Baltimore and London, 2004.
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