GALOIS REPRESENTATION ASSOCIATED TO ELLIPTIC MODULAR FORMS

TADASHI OCHIAI

Contents

1.	Statement of the main theorem	1
2.	Construction of the modular Galois representation	2
3.	Proof of the irreducibility	5

1. STATEMENT OF THE MAIN THEOREM

Definition 1.1. Let f be a normalized newform of weight $k \geq 2$. Let us consider the following conditions for a given l-adic representation $\rho_f : G_{\mathbb{Q}} \longrightarrow \operatorname{Aut}(V_f) \cong GL_2(\overline{\mathbb{Q}}_l)$: (L) The *L*-function $L(V_f, s)$ coincides with L(f, s) for $\operatorname{Re}(s) \gg 0$. (Ir) ρ is irreducible as a representation of $G_{\mathbb{Q}}$.

(Geom) The representation has an giometric origin (for a pure motive of weight k-1).

Theorem A (Deligne, Ribet)

Let f be a normalized newform of weight $k \geq 2$, level $\Gamma_1(M)$. For every prime l, we have a continuous Galois representation V_f of rank 2 over $\overline{\mathbb{Q}}_l$ which satisfies the conditions (L), (Ir), (Geom).

The construction by Deligne shows a stronger statement that the *L*-function $L(V_f, s)$ is convergent for $\operatorname{Re}(s) > \frac{k+1}{2}$. His stronger statement implies the following corollary.

Corollary A (Deligne) Let f be a normalized newform of weight $k \ge 2$, level $\Gamma_1(M)$. Then the generalized Ramanujan conjecture for f is true. That is $|a_p(f)| \ge 2p^{\frac{k-1}{2}}$ for every $p \nmid M$.

Proof of Theorem $A \Rightarrow$ Corollary A (Geom) + Weil conjecture (theorem by Deligne).

Remark

(1) Let f be a normalized newform of weight $k \ge 2$, level $\Gamma_1(M)$. The construction for V_f satisfying only (L) is know by Shimura. (l-adic approximation method) Note that Shimura's proof of Theorem A does not imply Corollary A. (2) Under (L) and (Ir), the representation is unique modulo isomorphism (Chebotarev density theorem)

2. Construction of the modular Galois representation

Let us consider:

 $Y_1(M)_{\mathbb{O}}$: affine modular curve of level $\Gamma_1(M)$. $X_1(M)_{\mathbb{O}}$: proper modular curve of level $\Gamma_1(M)$. $\mathfrak{Y}_1(M)$: model of $Y_1(M)_{\mathbb{Q}}$ over $\operatorname{Spec}(\mathbb{Z}[\frac{1}{M}])$ $\mathfrak{X}_1(M)$: model of $X_1(M)_{\mathbb{Q}}$ over $\operatorname{Spec}(\mathbb{Z}[\frac{1}{M}])$

All these are obtained as a moduli of elliptic curves or generalized elliptic curves (cf. a book of Katz-Mazur).

Under the geometric situation:

$$\begin{array}{c} \mathcal{E} \\ \downarrow \pi \\ \mathfrak{Y}_1(M) \end{array}$$

we introduce the following sheaf:

$$\mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l) = j_*\left(\varprojlim_n \operatorname{Sym}^{k-2}(R^1\pi_*(\mathbb{Z}/l^n\mathbb{Z}))\right) \otimes_{\mathbb{Z}_l} \overline{\mathbb{Q}}_l,$$

where j is the open immersion $\mathfrak{Y}_1(M) \hookrightarrow \mathfrak{X}_1(M)$. For any closed geometric point $\overline{\kappa} \cong$ $\operatorname{Spec}(\overline{\mathbb{F}}_p)$ of $\mathfrak{X}_1(M)$ of characteristic $p \nmid Ml, \ \mathcal{L}(\overline{\mathbb{Q}}_l)|_{\overline{\kappa}}$ is pure of weight k-2. Let us consider the etale cohomology

$$H^1_{\mathrm{et}}(X_1(M)_{\overline{\mathbb{Q}}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l))$$

on which the Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts compatibly with the Hecke action and the representation.

We put

$$V_{f} := H^{1}_{\text{et}}(X_{1}(M)_{\overline{\mathbb{Q}}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_{l}))[\pi_{f}]$$

$$:= \bigcap_{p \nmid Ml} \text{Ker}[H^{1}_{\text{et}}(X_{1}(M)_{\overline{\mathbb{Q}}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_{l})) \xrightarrow{T_{p}-a_{p}(f)} H^{1}_{\text{et}}(X_{1}(M)_{\overline{\mathbb{Q}}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_{l}))]$$

In order to show Theorem A with stronger version, we need to show the following three important statements.

(I) The f-component $V_f := H^1_{\text{et}}(X_1(M)_{\overline{\mathbb{Q}}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l))^{\text{new}}[\pi_f]$ on which the Hecke algebra is of dimension two over $\overline{\mathbb{Q}}_l$.

(II) The action of $G_{\mathbb{Q}}$ is unramified outside $Ml\infty$. For a prime $p \nmid Ml$, the (conjugation class of) geometric Frobenius $\operatorname{Frob}_p \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acting on V_f has absolute values which are algebraic numbers whose absolute values are $p^{\frac{k-1}{2}}$ (independently of $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$).

(III) For a prime $p \nmid Ml$, the trace of $\operatorname{Frob}_p \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acting on V_f coincides with p-th

Fourier coefficient $a_p(f)$.

As for (I), We recall the following isomorphism:

$$H^{1}_{\text{et}}(X_{1}(M)_{\overline{\mathbb{Q}}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_{l}))^{\text{new}} \cong H^{1}_{\text{et}}(X_{1}(M)_{\mathbb{C}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_{l}))^{\text{new}}$$
(induced by a fixed embedding $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$)
$$\cong H^{1}_{\text{Betti}}(X_{1}(M)_{\mathbb{C}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_{l}))^{\text{new}}$$
(Comparison between Etale and Betti)
$$\cong H^{1}_{\text{Betti}}(X_{1}(M)_{\mathbb{C}}, \mathcal{L}^{(k-2)}(\mathbb{C}))^{\text{new}}$$
(induced by a fixed isomorphism $\overline{\mathbb{Q}}_{l} \cong \mathbb{C}$)
$$\cong S_{k}(\Gamma_{1}(M); \mathbb{C})^{\text{new}} \oplus \overline{S_{k}(\Gamma_{1}(M); \mathbb{C})^{\text{new}}}$$
(Eichler-Shimura isomorphism)

On the other hand, we define the Hecke algebra \mathbb{T}_M to be the image of the abstract Hecke algebra $\mathbb{Q}[\{T_n\}_{n \nmid M}]$ in $\operatorname{End}_{\overline{\mathbb{Q}}_l}(H^1_{\operatorname{et}}(X_1(M)_{\overline{\mathbb{Q}}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l))^{\operatorname{new}})$. Taking the *f*-part $[\pi_f]$ of the \mathbb{T}_M -action on the above isomorphism, we see that $V_f = H^1_{\operatorname{et}}(X_1(M)_{\overline{\mathbb{Q}}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l))^{\operatorname{new}}[\pi_f]$ is of dimension two over $\overline{\mathbb{Q}}_l$. This shows (I).

In order to prove (II), we need to consider: $\mathfrak{Y}_1(M)_{\mathbb{F}_p}$: mod p reduction of the model $\mathfrak{Y}_1(M)$ over $\operatorname{Spec}(\mathbb{Z}[\frac{1}{M}])$ $\mathfrak{X}_1(M)_{\mathbb{F}_p}$: mod p reduction of the model of $\mathfrak{X}_1(M)$ over $\operatorname{Spec}(\mathbb{Z}[\frac{1}{M}])$.

For the following similar geometric situation as in the previous one:

$$\begin{array}{c} \mathcal{E}_{\mathbb{F}_p} \\ \downarrow \pi_{\mathbb{F}_p} \\ \mathfrak{Y}_1(M)_{\mathbb{F}_p}, \end{array}$$

we introduce the following sheaf:

$$\mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l) = j_*\left(\varprojlim_n \operatorname{Sym}^{k-2}(R^1(\pi_{\mathbb{F}_p})_*(\mathbb{Z}/l^n\mathbb{Z}))\right) \otimes_{\mathbb{Z}_l} \overline{\mathbb{Q}}_l,$$

where j is the open immersion $\mathfrak{Y}_1(M)_{\mathbb{F}_p} \hookrightarrow \mathfrak{X}_1(M)_{\mathbb{F}_p}$.

Let us consider a proper smooth morphism $q: \mathfrak{X}_1(M) \longrightarrow \mathbb{Z}[\frac{1}{M}].$

Theorem (Proper base change theorem)

For each $p \nmid M$,

$$(R^1q_*\mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l))_{\overline{\mathbb{F}}_p} \cong H^1_{\mathrm{et}}(\mathfrak{X}_1(M)_{\overline{\mathbb{F}}_p}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l)).$$

Similarly, we have:

$$(R^{1}q_{*}\mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_{l}))_{\overline{\mathbb{Q}}} \cong H^{1}_{\text{et}}(\mathfrak{X}_{1}(M)_{\overline{\mathbb{Q}}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_{l}))$$
$$\cong H^{1}_{\text{et}}(X_{1}(M)_{\overline{\mathbb{Q}}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_{l}))$$

Since q is smooth, the sheaf $(R^1q_*\mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l))$ over $\mathbb{Z}[\frac{1}{Ml}]$ is constant. Hence, for $p \nmid Ml$, we have

$$(R^1q_*\mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l))_{\overline{\mathbb{Q}}} \cong (R^1q_*\mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l))_{\overline{\mathbb{F}}_l}$$

as a module over $\pi_1(\mathbb{Z}[\frac{1}{Ml}],*) \cong \operatorname{Gal}(\mathbb{Q}_{\Sigma_{Ml}}/\mathbb{Q})$ where $\mathbb{Q}_{\Sigma_{Ml}}$ is the maximal Galois extension unramified outside Ml. Further, since the sheaf $\mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l)$ is pure of weight k-2 on $\mathfrak{X}_1(M)_{\overline{\mathbb{F}}_p}$, we see that the eigen values of Frob_p on $H^1_{\operatorname{et}}(\mathfrak{X}_1(M)_{\overline{\mathbb{F}}_p}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l)) \cong$ $H^1_{\operatorname{et}}(\mathfrak{X}_1(M)_{\overline{\mathbb{Q}}}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l))$ are algebraic numbers whose complex absolute values are $p^{\frac{k-1}{2}}$. This shows (II).

In order to show (III), we assume that the weight k is equal to 2 where $\mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l)$ is a constant sheaf. By using congruence (weight 2 \leftrightarrow weight k) modulo power of l, we can justify "the reduction to weight 2".

Let Φ_p : be the endomorphism on by taking "the *p*-th power of coordinates" on $(\mathfrak{X}_1(M)_{\mathbb{F}_p})_{\mathbb{F}_p}$.

The endomorphism induced on $H^1_{\text{et}}((\mathfrak{X}_1(M)_{\mathbb{F}_p})_{\mathbb{F}_p}, \mathcal{L}^{(k-2)}(\overline{\mathbb{Q}}_l))^{\text{new}}[\pi_f]$ by Φ_p is also denoted by the same symbol Φ_p .

It is a fundamental property of the etale cohomology that Φ_p is equivalent to the action of the geometric Frobenius element Frob_p . We compare the action of Φ_p with Hecke correspondence.

We consider the following elements in $\operatorname{Corr}(\mathfrak{X}_1(M),\mathfrak{X}_1(M))$

- (1) T_p : Hecke correspondence at p
- (2) $\langle p \rangle$: diamond operator at p

Recall that $\mathfrak{X}_1(M)$ parametrizes isomorphism classes of (E, e) where E is an elliptic curve and e is an element of order M.

It is checked that, over \mathbb{Q} , we have:

- (1) T_p sends (E, e) to $\sum_{C} (E/C, e+C)$ where $C \subset E$ runs through cyclic subgroups of order p such that $C \cap \langle e \rangle = \{0\}$.
- (2) $\langle p \rangle$ sends (E, e) to (E, pe).

We denote by $\widetilde{T_p}, \langle \widetilde{p} \rangle \in \operatorname{Corr}(\mathfrak{X}_1(M)_{\mathbb{F}_p}, \mathfrak{X}_1(M)_{\mathbb{F}_p})$ the reduction modulo p of T_p and $\langle p \rangle$.

Note that, if E has ordinary reduction at p, we have

$$(\widetilde{E/C, e+C}) = (\widetilde{E}^{\sigma_p}, \widetilde{e}^{\sigma_p})$$
 if *C* is the unique canonical subgroup
$$(\widetilde{E/C, e+C}) = (\widetilde{E}^{\sigma_p^{-1}}, p\widetilde{e}^{\sigma_p^{-1}})$$
 if *C* is one of the *p* non-canonical subgroup

Note that a correspondence induces an endomorphism on the cohomology. Thus we obtain:

Theorem (Congruence relation)

As an endomorphism on $H^1_{\text{et}}(\mathfrak{X}_1(M)_{\overline{\mathbb{F}}_n}, \overline{\mathbb{Q}}_l)$, we have:

$$\Phi_p + p \widetilde{\langle p \rangle} (\Phi_p)^{-1} = \widetilde{T_p}.$$

From this relation we have:

$$\operatorname{tr}(\operatorname{Frob}_p) = \operatorname{tr}(\Phi_p) = \operatorname{tr}\widetilde{T_p} = a_p(f)$$

on $H^1_{\text{et}}(\mathfrak{X}_1(M)_{\overline{\mathbb{F}}_p}, \overline{\mathbb{Q}}_l)^{\text{new}}[\pi_f].$

3. Proof of the irreducibility

We will prove the (Ir) basically following the proof by Ribet. Suppose that the Galois representation ρ_f (on V_f) is not irreducible. Then we have

$$0 \longrightarrow V_1 \longrightarrow V_f \longrightarrow V_2 \longrightarrow 0,$$

where V_1 and V_2 are Galois representation of $G_{\mathbb{Q}}$ which are of dimension 1 over $\overline{\mathbb{Q}}_l$. The images of $G_{\mathbb{Q}}$ in $\operatorname{Aut}(V_1)$ and $\operatorname{Aut}(V_2)$ are *l*-adic Lie groups. Hence, $G_{\mathbb{Q}}$ acts on each V_i through the character $\chi^{a_i}_{cyc}\epsilon_i$ with $a_i \in \mathbb{Z}_p$ and ϵ_i characters of finite order.

- (1) Since the Galois representation V_f restricted to the decomposition group at l is Hodge-Tate at l, a_1 and a_2 are integer.
- (2) Since det V_f is χ^{1-k}_{cyc} , $a_1 + a_2 = 1 k$.
- (3) By Weil conjecture, for every prime $p \nmid Nl$, we have

$$|a_p(f)| = |p^{-a_1}\epsilon_1(p) + p^{-a_2}\epsilon_2(p)| \le 2p^{\frac{k-1}{2}}.$$

If we choose a prime p satisfying $\epsilon_1(p) = \epsilon_2(p)$, we have

$$|p^{-a_1} + p^{-a_2}| \le 2p^{\frac{k-1}{2}}$$

If $a_1 \neq a_2$, we have $p^{-a_1} + p^{-a_2} > 2\sqrt{p^{-(a_1+a_2)}} = 2p^{\frac{k-1}{2}}$. Thus a_1 must be equal to a_2 . Thus, we deduce that

- (a) k is odd.
- (b) $a_1 = a_2 = \frac{k-1}{2}$.
- (4) Since k is odd, $\epsilon_1 \epsilon_2$ is an odd character. Hence, $\epsilon_1 \epsilon_2^{-1} = (\epsilon_1 \epsilon_2)(\epsilon_2^{-1})^2$ is also an odd character. Especially, we show that $\epsilon_1 \epsilon_2^{-1} \neq \mathbf{1}$.
- (5) We have

$$\sum_{p \nmid Ml} |a_p(f)|^2 p^{-s} = \sum_{p \mid Ml} |1 - \epsilon_1 \epsilon_2^{-1}(p)|^2 p^{k-1-s}$$

If we write $\epsilon_1 \epsilon_2^{-1}(p) = e^{\frac{2n_p \pi i}{c}}$ with c the order of $\epsilon_1 \epsilon_2^{-1}$ for some $n_p \in \mathbb{Z}/c\mathbb{Z}$, we have

$$|1 - \epsilon_1 \epsilon_2^{-1}(p)|^2 = (1 - e^{\frac{2n_p \pi i}{c}})(e^{-\frac{2n_p \pi i}{c}}) = 2 - 2\cos\frac{2n_p \pi i}{c}.$$

Recall that

$$\sum_{p \nmid Ml} p^{k-1-s} = -\log(s-k) + O(1) \quad (\text{when } s \longrightarrow k+)$$

Since c > 1 and n_p is equidistributed modulo c, the contribution of $\cos \frac{2n_p \pi i}{c}$ for moving p vanishes. Hence, we have

$$\sum_{p \nmid Ml} |a_p(f)|^2 p^{-s} = -2\log(s-k) + O(1) \quad (\text{when } s \longrightarrow k+)$$

(6) On the other hand, Rankin studies the *L*-function $L(g \otimes g, s)$ and shows that it has a simple pole of residue 1 at s = k for every cusp form g of weight $k \ge 2$. This implies

$$\sum_{p \nmid Ml} |a_p(f)|^2 p^{-s} = -\log(s-k) + O(1) \quad (\text{when } s \longrightarrow k+)$$

This implies the contradiction. Hence the Galois representation is irreducible.

OSAKA UNIVERSITY

E-mail address: (family name)@math.sci.osaka-u.ac.jp